BAY AREA AIR QUALITY MANAGEMENT DISTRICT SINCE 1955 ALAMEDA COUNTY Tom Bates Scott Haggerty Janet Lockhart Nate Miley John Gioia Mark Ross (Chair) Michael Shimansky Gayle B. Uilkema MARIN COUNTY NAPA COUNTY Brad Wagenknecht SAN FRANCISCO COUNTY Chris Daly Jake McGoldrick Gavin Newsom SAN MATEO COUNTY Jerry Hill (Vice-Chair) Carol Klatt SANTA CLARA COUNTY Erin Garner Yoriko Kishimoto Liz Kniss Harold C. Brown, Jr. Mr. Bill Pfanner Project Manager Californa Energy Commission 1516 9th Street Sacramento, CA 95814-5512 Re: Eastshore Energy Center **BAAQMD Application 15195** RECD OCT 2 3 2007 Dear Mr. Pfanner: CONTRA COSTA COUNTY > This is to advise you that the BAAQMD has issued the Final Determination of Compliance (FDOC) for the proposed Eastshore Energy Center (EEC). The facility would be located at 25101 Clawiter Road in the City of Hayward, Alameda County, in an area zoned for industrial uses. The proposed facility would be a nominal 115.5-MW peaker plant, utilizing fourteen natural-gas fired engine generator sets, and a 367 hp diesel powered emergency standby generator. Octobef 17, 2007 The enclosed revised FDOC summarizes how the EEC will comply with applicable District regulations, including BACT and emission offset requirements. The FDOC has satisfied the public notice and 30-day public comment requirements of District Regulations 2-2-405 and 406. A copy of the FDOC is enclosed. If you have any questions regarding this matter, please contact Brian K. Lusher, Air Quality Engineer II, at (415) 749-4623. Very truly yours, Jack P. Broadbent Executive Officer/APCO Patrick Kwok SOLANO COUNTY John F. Silva SONOMA COUNTY Tim Smith Pamela Torliatt (Secretary) Enclosure JPB:bkl Jack P. Broadbent **EXECUTIVE OFFICER/APCO** Spare the Air The Air District is a Certified Green Business Printed using soy-based inks on 100% post-consumer recycled content paper # Final **Determination of Compliance** ## **Eastshore Energy Center** Bay Area Air Quality Management District Application No. 15195 Site No. 18041 October, 2007 Brian K. Lusher Air Quality Engineer II ### **Table of Contents** | I | Back | ground | 1 | | | | |------|----------------|--|----|--|--|--| | II | Proje | ect Description | 2 | | | | | | A. | Permitted Equipment | | | | | | | B. | Equipment Operating Scenarios | 4 | | | | | | | 1. 14 Natural Gas Fired Engine Generator Sets | 4 | | | | | | | 2. Emergency Standby Generator Set | 4 | | | | | | C. | Air Pollution Control Strategies and Equipment | 4 | | | | | III | Facil | ity Emissions | 6 | | | | | | A. | Regulated Criteria Pollutants | 6 | | | | | | B. | Toxic Air Contaminants | 8 | | | | | IV | State | Statement of Compliance | | | | | | | A. | Regulation 2, Rule 2: New Source Review | 9 | | | | | | | 1. Best Available Control Technology (BACT) Determinations | | | | | | | | 2. Emission Offsets | | | | | | | | 3. PSD Air Quality Impact Analysis | | | | | | | В. | Health Risk Assessment. | 23 | | | | | | C. | Other Applicable District Rules and Regulations | 24 | | | | | | D. | State Requirements | 28 | | | | | | E. | Federal Requirements | 28 | | | | | V | Perm | it Conditions | 29 | | | | | VI | Reco | mmendation | 40 | | | | | VII | Glos | sary | 42 | | | | | | 11 | | | | | | | Appe | endix <i>A</i> | A Emission Calculations | | | | | | Appe | endix E | B Health Risk Screening Results | | | | | ### **Tables** | Table 1: Control Strategies and Emission Limits for Wartsila Engine Generator Sets | 6 | |---|----------| | Fable 2: Maximum Daily Regulated Criteria Air Pollutant Emissions for Each Proposed Source | | | Table 3: Maximum Annual Facility Regulated Criteria Air Pollutant Emissions | 8 | | Table 4: Maximum Facility Toxic Air Contaminant (TAC) Emissions | 9 | | Table 5: BACT Guidelines for Spark-Ignited Lean Burn Reciprocating Internal Combustion Engines | 11 | | Fable 6: PM ₁₀ /PM _{2.5} Emissions Data for Lean Burn Natural Gas Fired Engine Generator Sets | | | Fable 7: District BACT Limits for Proposed Emergency Standby Generator Set, Diesel Engine. | | | Table 8: Emission Reduction Credits Identified by Eastshore Energy, LLC as of July 20 (tons of POC/yr) | 07
22 | | Table 9: Health Risk Screening Analysis Results | 24 | | Γable 10: Applicable New Source Performance Standards | 28 | #### I Background On September 22, 2006, Eastshore Energy, LLC, a wholly owned subsidiary of Tierra Energy, submitted an Application for Certification (AFC) to construct and operate a simple-cycle (peaking) power plant, the Eastshore Energy Center (Eastshore), in the City of Hayward. The proposed Eastshore site is located at 25101 Clawiter Road in the City of Hayward, Alameda County, in an area zoned for industrial uses. The proposed facility would be a nominal 118-megawatt (MW) gross (115.5 MW net) simple cycle power plant consisting of 14 Wartsila 20V34SG natural gas-fired reciprocating engine generator sets and associated equipment including an emergency standby generator set (369 HP Diesel Engine). The Eastshore project is designed as a peaking facility to meet electric generation load during periods of high demand, which generally occur during daytime hours and more frequently during the summer than other portions of the year. The project is expected to have an annual capacity factor of approximately 45 percent, depending on weather-related customer demand, load growth, hydroelectric supplies, generating unit retirements and replacements, the level of generating unit and transmission outages, and other factors. This is the Bay Area Air Quality Management District's (BAAQMD or District) Final Determination of Compliance (FDOC) for the Eastshore Energy Center. Pursuant to District Regulation 2, Rule 3, Section 403, this document presents the District's final determination that the proposed project will comply with applicable federal, state, and BAAQMD regulations, including the Best Available Control Technology (BACT) and emission offset requirements of the District's New Source Review regulation. Proposed permit conditions necessary to insure compliance with applicable rules and regulations and air pollutant emission calculations are also included. This document also includes a health risk screening assessment that evaluates the impact of the project's toxic air contaminant emissions on public health. The District is issuing this Final Determination of Compliance after input from the public and interested government agencies. In accordance with BAAQMD Regulation 2, Rule 3, Section 404, the Preliminary Determination of Compliance (PDOC) was subject to the public notice, public inspection, and public comment requirements of District Regulation 2, Rule 2, Sections 406 and 407. Notice was given to the public of the availability of this PDOC, and the public had a 30-day comment period from the date of the notice to comment on it. The District has reviewed and considered all comments received from the public and interested government agencies, and has (as appropriate) incorporated comments into this FDOC pursuant to District Regulation 2, Rule 3, Section 405. This FDOC will be submitted to the California Energy Commission (CEC) for use during the certification process for this proposed facility. This FDOC also serves as the evaluation report for the BAAQMD Authority to Construct application number 15195. The Authority to Construct will be issued when and if the CEC certifies the project. #### **II** Project Description This section describes the equipment that would be installed at the proposed Eastshore Energy Center, the various operating scenarios that are anticipated, and what strategies and equipment will be used to control air emissions. #### A. Permitted Equipment Eastshore Energy, LLC is proposing a 115.5-MW net, simple cycle power plant consisting of 14 Wartsila 20V34SG natural gas-fired reciprocating engine generator sets and associated equipment including an emergency standby generator set (369 HP Diesel Engine). The proposed Eastshore Energy Center will consist of the following permitted equipment: - S-1 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-1 Selective Catalytic Reduction System and A-15 Oxidation Catalyst - S-2 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-2 Selective Catalytic Reduction System and A-16 Oxidation Catalyst - S-3 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-3 Selective Catalytic Reduction System and A-17 Oxidation Catalyst - S-4 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-4 Selective Catalytic Reduction System and A-18 Oxidation Catalyst - S-5 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-5 Selective Catalytic Reduction System and A-19 Oxidation Catalyst - S-6 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-6 Selective Catalytic Reduction System and A-20 Oxidation Catalyst - S-7 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-7 Selective Catalytic Reduction System and A-21 Oxidation Catalyst - S-8 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-8 Selective Catalytic Reduction System and A-22 Oxidation Catalyst - S-9 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-9 Selective Catalytic Reduction System and A-23 Oxidation Catalyst - S-10 Natural Gas Fired Turbocharged Engine Generator Set,
8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-10 Selective Catalytic Reduction System and A-24 Oxidation Catalyst - S-11 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-11 Selective Catalytic Reduction System and A-25 Oxidation Catalyst - S-12 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-12 Selective Catalytic Reduction System and A-26 Oxidation Catalyst - S-13 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-13 Selective Catalytic Reduction System and A-27 Oxidation Catalyst - S-14 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-14 Selective Catalytic Reduction System and A-28 Oxidation Catalyst - S-15 Emergency Standby Generator Set; Diesel Engine; Caterpillar Model C9ATAAC, 369 HP The proposed Eastshore facility will also include the following equipment that is exempt from District permit requirements: Natural Gas Fired Heater to Heat Incoming Natural Gas Feed to all Engine Generator Sets, Max Firing Rate 2.0 MMBtu/hr The natural gas fired heater is exempt from District permit requirements per Regulation 2, Rule 1, Section 114, which states: - **2-1-114.1.2 Exemption, Combustion Equipment:** The following equipment is exempt from the requirements of Sections 2-1-301 and 302, only if the source does not emit pollutants other than combustion products, and those combustion products are not caused by the combustion of a pollutant generated from another source, and the source does not require permitting pursuant to Section 2-1-319. - 114.1 Boilers, Heaters, Steam Generators, Duct Burners, and Similar Combustion Equipment: - 1.1 Any of the above equipment with less than 1 million BTU per hour rated heat input. - 1.2 Any of the above equipment with less than 10 million BTU per hour rated heat input if fired exclusively with natural gas (including compressed natural gas), liquefied petroleum gas (e.g. propane, butane, isobutane, propylene, butylenes, and their mixtures), or any combination thereof. #### **B.** Equipment Operating Scenarios #### 1. 14 Natural Gas Fired Engine Generator Sets The Eastshore project is designed as a peaking facility to meet electric generation load during periods of high demand, which generally occur during daytime hours and more frequently during the summer than other times of the year. The project is expected to have an annual capacity factor of approximately 45 percent, depending on weather-related customer demand, load growth, hydroelectric supplies, generating unit retirements and replacements, the level of generating unit and transmission outages, and other factors. The following operating scenarios are expected for the facility. Base Load: Maximum continuous output Load Following: Facility would be operated to meet contractual load and spot sale demand, with a total output less than the base load scenario Partial Shutdown: Based upon contractual load and spot sale demand, it may be economically favorable to shutdown one or more engine generator sets; this would occur during periods of low overall demand such as late evening and early morning hours Full Shutdown: May be caused by equipment malfunction, fuel supply interruption, or transmission line disconnect or if market price of electricity falls below cost of generation The following projected operating scenario was utilized to estimate maximum annual air pollutant emissions from the 14 Engine Generator Sets. - 4,000 hours of operation per year for each engine generator set - 300 cold start-ups per engine generator set per year (30 minutes/start-up) - 300 shut downs per engine generator set per year (8.5 minutes/shut down) #### 2. Emergency Standby Generator Set The emergency standby diesel generator is intended for emergency use only, as defined by the California Air Resources Board at 17 C.C.R. section 93115(d)(25) (the Airborne Toxics Control Measure for stationary compression ignition engines). Such emergency conditions are not expected to be a common occurrence. In addition, the generator set will have to be operated occasionally on a short-term test basis for testing and in order to ensure operational reliability. This short-term operation will not exceed 50 hours per year. #### C. Air Pollution Control Strategies and Equipment The proposed Eastshore Energy Center includes sources that trigger the requirement to use Best Available Control Technology (BACT) in the District's New Source Review regulation (District Regulation 2, Rule 2, NSR) for emissions of nitrogen oxides (NO_x), carbon monoxide (CO), precursor organic compounds (POCs), and particulate matter of less than or equal to 10 microns in diameter (PM_{10}). Recently, particulate matter of less than or equal to 2.5 microns in diameter ($PM_{2.5}$), a subset of PM_{10} , has been the focus of new regulatory efforts including a revised Federal ambient air quality standard. The particulate matter emitted from the large natural gas fired engines is typically less than 1 micron in diameter (see AP-42, Table 3.2-2, 7/00), and may be considered to be both PM_{10} and $PM_{2.5}$. For the purposes of the FDOC, the total particulate matter emissions, PM_{10} emissions and $PM_{2.5}$ emissions are all equivalent. These emissions are referred to as " $PM_{10}/PM_{2.5}$ " in this FDOC. The control strategies and equipment that are being proposed to comply with BACT are as follows. ### 1. Selective Catalytic Reduction with Ammonia (NH₃) Injection for the Control of NO_x Emissions Each engine generator set triggers BACT for NO_x emissions. The NO_x emissions from each engine generator set will be abated by selective catalytic reduction (SCR) systems with ammonia (NH₃) injection. ### 2. Oxidation Catalyst and Good Combustion Practices for the Control of CO Emissions Each engine generator set triggers BACT for CO emissions. The engine generator sets will operate on a lean fuel mixture that minimizes incomplete combustion and CO emissions. The engine generator sets will be abated by oxidation catalysts, which oxidize the CO emissions and produce carbon dioxide (CO₂) and water. ### 3. Oxidation Catalyst and Good Combustion Practices for the Control of POC Emissions Each engine generator set triggers BACT for POC emissions. The engine generator sets operate on a lean fuel mixture that minimizes incomplete combustion and POC emissions. The engine generator sets will be abated by oxidation catalysts, which also reduce POC emissions. ### 4. Exclusive Use of Clean-burning Natural Gas for the Control of SO₂, PM₁₀/PM_{2.5} Emissions Each engine generator set triggers BACT for SO_2 and $PM_{10}/PM_{2.5}$. emissions. The engine generator sets will burn exclusively Public Utility Commission (PUC) regulated natural gas and utilize good combustion practices to minimize sulfur dioxide (SO_2), and $PM_{10}/PM_{2.5}$ emissions. Because the SO_2 emission rate is proportional to the sulfur content of the fuel burned and is not dependent upon other combustion characteristics, the use of "low sulfur content" natural gas will result in the lowest possible emission of SO_2 . Table 1: Control Strategies and Emission Limits for Wartsila Engine Generator Sets | | | | Pollutant | ant | | | |------------------------------|---------|-----------------------|-----------------------|---|------------------------------|--| | | NO_x | CO | POC | PM ₁₀ /PM _{2.5} | SO_2 | | | Control Technology | SCR | Oxidation
Catalyst | Oxidation
Catalyst | PUC-Regulated
Natural Gas | PUC-Regulated
Natural Gas | | | Emissions Limit ^b | 5 ppmvd | 13 ppmvd | 25 ppmvd | 1.3 lb/hr
average,
up to 1.9 lb/hr
maximum any
single engine ^a | 0.237 lb/hr | | ^aParticulate emission limit is a daily emissions cap on all fourteen engines assuming 1 cold start per engine and 23.5 hours of normal operation at 1.3 lb/hr. Annual particulate limit is an annual emissions cap assuming 300 cold starts/shutdowns per year per engine and 3807.5 hours per year of normal operation per engine at 1.3 lb/hr. The maximum emission rate for any given engine is 1.9 lb/hr. ### 5. Use of CARB-Certified Engine and Limitation on Hours of Non-Emergency Use for the Control of Emergency Standby Generator Set Emissions. The emergency standby generator set triggers BACT for NO_x and CO. The generator set will be limited to 50 hours or less of non-emergency use per year, for testing and reliability purposes only, which will limit the emissions from this source. In addition, the emergency standby generator will be an engine certified by the California Air Resources Board as having air emissions that satisfy the District's BACT requirements. #### **III** Facility Emissions The facility regulated criteria air pollutant emissions and toxic air contaminant emissions are presented in the following tables. Detailed emission calculations, including the derivations of emission factors, are presented in the appendices. #### A. Regulated Criteria Pollutants Table 2 is a summary of the daily maximum regulated criteria air pollutant emissions for the permitted sources at the proposed Eastshore Energy Center. These emission rates are used to determine if the BACT requirements of the District New Source Review Regulation (NSR; Regulation 2, Rule 2) are triggered on a pollutant-specific basis. Pursuant to Regulation 2-2-301.1, any new source that has the potential to emit 10 pounds or more per highest day of POC, NPOC, NO_x (as nitrogen dioxide, NO₂), SO₂, PM₁₀, or CO is subject to the BACT requirement for that pollutant. ^bConcentrations in parts per million by volume dry (ppmvd) of NO_x, CO, and POC corrected to 15% oxygen (O₂) dry basis, and are averaged
over a 1-hour period. **Table 2: Maximum Daily Regulated Criteria Air Pollutant Emissions** for Each Proposed Source | | Pollutant, (lb/day) for each Engine | | | | | |---|---|--------------------|-----------------------------------|-------------------------------------|-------------------| | Source | Nitrogen
Oxides
(as NO ₂) | Carbon
Monoxide | Precursor
Organic
Compounds | PM ₁₀ /PM _{2.5} | Sulfur
Dioxide | | S-1 through S-14 Natural Gas
Fired Engine Generator Set (no
startup/shutdown) ^a | 31.87 | 50.43 | 55.41 | 31.20 | 5.68 | | S-1 through S-14 Natural Gas
Fired Engine Generator Set
(one startup/shutdown) ^b | 40.02 | 62.60 | 60.87 | 47.08 | 5.68 | | S-15 Emergency Standby
Generator Set ^c | 51.18 | 45.13 | 2.69 | 2.18 | 0.107 | All emission rates on this line are based upon 24 hours of Engine Generator Set full load operation. PM-10 is based on 1.3 lb/hour average emission rate. Table 3 is a summary of the maximum annual regulated criteria air pollutant emissions for the facility from proposed permitted sources. Pursuant to the Prevention of Significant Deterioration (PSD) requirements of New Source Review (Regulation 2-2-304.1 and 2-2-305.1), a new major facility with maximum annual pollutant emissions in excess of any of the PSD trigger levels shown must perform modeling to assess the net air quality impact of the proposed facility. The emissions from the Eastshore Energy facility are below all PSD Trigger Levels. ^bNO_x (as NO₂), CO, POC, PM₁₀, and PM_{2.5} emission rates on this line are based upon one cold start-up cycle, and 23.5 hours of Engine Generator Set full load operation. SO₂ emission rates on this line are based upon 24 hours of Engine Generator Set full load operation. ^cEmission rates on this line are based upon 24 hr/day operation at maximum emission rates. This is not a likely operating scenario for the emergency standby generator, but it is the maximum potential emission rate. Table 3: Maximum Annual Facility Regulated Criteria Air Pollutant Emissions | Pollutant | Permitted Source
Emissions ^{a,b}
(tons/year) | PSD
Trigger ^c
(tons/year) | |---------------------------------------|---|--| | Nitrogen Oxides (as NO ₂) | 54.35 | 100 | | Carbon Monoxide | 84.45 | 100 | | Precursor Organic
Compounds | 76.11 | N/A ^d | | PM ₁₀ /PM _{2.5} | 40.31 | 100 | | Sulfur Dioxide | 6.63 | 100 | ^aEmission increases from proposed engine generator sets and emergency standby generator set; specified as permit condition limits and does not include emissions from exempt equipment. #### **B.** Toxic Air Contaminants Table 4 is a summary of the maximum facility toxic air contaminant (TAC) emissions from new sources. These emissions are used as input data for air pollutant dispersion models used to assess the increased health risk to the public resulting from the project. The ammonia emissions shown are based on an ammonia emission concentration of 10 ppmvd @ 15% O₂ due to ammonia slip from the A-1 through A-14 SCR Systems. The risk screening trigger levels shown are per Regulation 2, Rule 5. Includes start-up and shutdown emissions for proposed engine generator sets. ^cFor a new major facility. ^dThere is no PSD trigger level for POC. **Table 4: Maximum Facility Toxic Air Contaminant (TAC) Emissions** | Toxic
Air
Contaminant | Total Project Emissions ^a (lb/hr) | Acute
1-hr max.
Trigger Level
(lb/hr) | Total
Project
Emissions ^a
(lb/yr) | Chronic
Trigger
Level
(lb/yr) | |-------------------------------|--|--|---|--| | 1,3-Butadiene | 2.20E-01 | None | 8.70E02 | 1.10E+00 | | Acetaldehyde | 3.17E-01 | None | 1.25E03 | 6.40E+01 | | Acrolein | 3.53E-02 | 4.2E-04 | 1.40E02 | 2.30E+00 | | Ammonia | 1.39E+01 | 7.1E00 | 1.10E05 | 7.70E+03 | | Benzene | 1.31E-01 | 2.9E00 | 5.17E02 | 6.40E+00 | | Benzo-a-anthracene | 3.52E-05 | None | 1.39E-01 | None | | Benzo-a-pyrene | 1.62E-06 | None | 6.40E-03 | 1.10E-02 | | Benzo-b-fluoranthene | 2.45E-05 | None | 9.7E-02 | None | | Benzo-k-fluoranthene | 4.70E-06 | None | 1.86E-02 | None | | Chrysene | 8.56E-06 | None | 3.39E-02 | None | | Dibenz-ah-anthracene | 1.62E-06 | None | 6.40E-03 | None | | Ethylbenzene | 4.26E-02 | None | 1.69E02 | 7.70E+04 | | Formaldehyde | 2.83E+00 | 2.1E-01 | 1.12E04 | 3.00E+01 | | Indeno-123cd-pyrene | 4.30E-06 | None | 1.70E-02 | None | | Naphthalene | 1.50E-02 | None | 5.95E01 | None | | Propylene | 3.22E+00 | None | 1.28E04 | 1.20E+05 | | Toluene | 1.43E-01 | 8.2E01 | 5.67E02 | 1.20E+04 | | Xylenes | 3.87E-01 | 4.9E01 | 1.53E03 | 2.70E+04 | | Diesel Exhaust
Particulate | 9.10E-02 | None | 2.23E00 | 5.80E-01 | ^aTotal combined emissions for S-1 through S-14 Engine Generator Sets, and S-15 Emergency Standby Generator Set, Diesel Engine. In accordance with the Office of Environmental Health Hazard Assessment, Cal EPA, *Air Toxics Hot Spots Program Risk Assessment Guidelines* (August, 2003), diesel particulate matter is used as a surrogate for whole diesel exhaust and is the basis for the potential risk calculations. #### **IV** Statement of Compliance The following section summarizes the applicable District Rules and Regulations and describes how the proposed Eastshore Energy Center will comply with those requirements. #### A. Regulation 2, Rule 2: New Source Review The primary requirements of the District's New Source Review rule that may apply to the proposed Eastshore Energy Center are (i) Section 2-2-301, the "Best Available Control Technology" (BACT) requirement; (ii) Section 2-2-302, the "Offset" requirement; and (iii) Section 2-2-304 the "Prevention of Significant Deterioration" (PSD) air quality impact analysis requirement. #### 1. Best Available Control Technology (BACT) Determinations District Regulation 2-2-301 requires that any source that has the potential to emit 10 pounds or more per day of specified regulated air pollutants must employ the "Best Available Control Technology" (BACT) to control emissions of these pollutants. Pursuant to Regulation 2-2-206, BACT is defined as the more stringent of: - (a) "The most effective control device or technique which has been successfully utilized for the type of equipment comprising such a source; or - (b) The most stringent emission limitation achieved by an emission control device or technique for the type of equipment comprising such a source: or - (c) Any emission control device or technique determined to be technologically feasible and cost-effective by the APCO, or - (d) The most effective emission control limitation for the type of equipment comprising such a source which the Environmental Protection Agency (EPA) states, prior to or during the public comment period, is contained in an approved implementation plan of any state, unless the applicant demonstrates to the satisfaction of the APCO that such limitations are not achievable. Under no circumstances shall the emission control required be less stringent than the emission control required by any applicable provision of federal, state or District laws, rules or regulations." The type of BACT described in subsections (a) and (b) must have been demonstrated in practice at an actual facility. This type of BACT is referred to as "BACT 2" or achieved-in-practice BACT. The BACT category described in subsection (c) is referred to as "technologically feasible/cost-effective" and it must be commercially available, demonstrated to be effective and reliable on a full-scale unit, and shown to be cost-effective on the basis of dollars per ton of pollutant abated. This is referred to as "BACT 1". BACT guidelines (for both the achieved-in-practice and "technologically feasible/cost-effective" categories) for various source categories have been compiled in the BAAQMD BACT/Toxics Best Available Control Technology (TBACT) Workbook. The San Joaquin Valley Air Pollution Control District (SJVAPCD) and South Coast Air Quality Management District (SCAQMD) have also published BACT guidelines, and the ARB and EPA maintain BACT Clearinghouses that compile information on BACT determinations that have been made for past projects. Table 5 provides a comparison of the BACT emission limits for various pollutants in the guidelines published by the BAAQMD, SJVAPCD, and the SCAQMD. **Table 5: BACT Guidelines for Spark-Ignited Lean Burn Reciprocating Internal Combustion Engines** | District | NO _x (ppmvd) | POC (ppmvd) | CO
(ppmvd) | PM ₁₀
(g/bhp-hr) | |-------------------------------------|-------------------------|-------------|---------------|--------------------------------| | BAAQMD
Achieved-in-practice | 12 | 32 | 74 | n/a | | BAAQMD
Technologically Feasible | 6 | n/a | 12 | n/a | | SJVAPCD
Achieved-in-practice | 9 | 25 | 56 | 0.02 | | SJVAPCD
Technologically Feasible | 5 | n/a | n/a | n/a | | SCAQMD
Achieved-in-practice | 9 | 25 | 33 | n/a | Notes: 1. All ppmvd values corrected to 15% O₂. 2. SJVAPCD PM₁₀ BACT Guideline based on GUIDANCE FOR THE PERMITTING OF ELECTRICAL GENERATION TECHNOLOGIES (November 2001). No source test data has been found to demonstrate that this value is actually achieved-in-practice. It should be noted that information in Table 5 was published in the various BACT guidelines, but may not be updated to reflect the latest information. In determining what level of emissions control to require as BACT for the proposed Eastshore Energy Center, the District consulted these BACT guidelines and also looked at similar facilities that have recently been built in Tehama County, San Joaquin Valley, Nevada, Kansas, Colorado, and
Missouri. #### a. BACT Determination for Natural Gas Fired Engine Generator Sets The following discussion describes the District's BACT determinations by pollutant for the natural gas fired engine generator sets of the proposed Eastshore Energy Center. In summary, the District's BACT determinations are as follows: - For NO_x (as NO₂), BACT is an emission limit of 5 ppmvd @ 15% O₂. This is a technologically feasible/cost effective BACT emission limit based on SCR control technology. - For CO, BACT is an emission limit of 13 ppmvd @ 15% O₂. This is a technologically feasible/cost effective BACT emission limit based on control with an Oxidation Catalyst. - For POC, BACT is an emission limit of 25 ppmvd @ 15% O₂ at engine load greater than 75%. This is an achieved-in-practice BACT emission limit based on control using an Oxidation Catalyst. • For PM₁₀/PM_{2.5} BACT is a daily facility-wide emissions limit of 461.65 lb/day, which is based on average emissions of 1.3 lb/hr per engine and one cold startup per day. For each individual engine, BACT is a 1.3 lb/hr limit where feasible, with a provision for any individual engine to emit up to 1.9 lb/hr as long as it meets the daily facility wide limit. This is considered an achieved-in-practice BACT emission limit based on the use of PUC quality natural gas and good combustion practices, and is also technologically feasible and cost-effective. The detailed BACT analysis for each pollutant is provided below. #### Nitrogen Oxides (NO_x as NO₂) NO_x (as NO_2) emissions from natural gas fired engines may be controlled using combustion controls and post-combustion controls. Combustion controls reduce the formation of NO_x during the combustion process. Post-combustion controls remove the NO_x from the engine exhaust. Wartsila 20V34SG engines incorporate several combustion controls. Lean Burn Combustion utilizes more air in the cylinder than is required for complete combustion. Lean combustion reduces the peak temperature and less thermal NO_x is produced. Pre-Chamber Combustion Ignition (also known as Clean Burn Combustion, or Prestratified Charge) ignites a portion of the lean air-fuel mixture in a small prechamber above each cylinder. The prechamber combustion provides a high energy ignition source for the main fuel charge in the cylinder. These engines also utilize a turbocharging system to increase the fuel/air density resulting in greater combustion efficiency. The facility will also incorporate post-combustion control in the form of a Selective Catalytic Reduction (SCR) system, which controls NO_x emissions by reacting the NO_x with ammonia (NH₃) in the presence of a catalyst to form water and nitrogen. Estimated control efficiencies are greater than 90%. In order to provide effective NO_x control the ammonia injection rate is higher than the amount consumed in the NO_x removal reactions and a small amount is emitted at the stack. The amount of unreacted ammonia is known as the ammonia slip. The BAAQMD BACT guidelines specify SCR for NO_x Control as the typical technology for BACT Level 1 (Technologically Feasible/Cost Effective) and for BACT Level 2 (Achieved-in-practice) for this source category. The BACT guidelines state that Level 2 BACT for NO_x emissions is 12 ppmvd @ 15 percent O₂. The BAAQMD BACT guidelines state that Level 1 BACT for NO_x emissions is 6 ppmvd @ 15 percent O₂. This level was based on a permit issued by the Tehama County Air Pollution Control District for a facility that operates natural gas fired engine generator sets located in Red Bluff, California. Subsequent operation of that facility demonstrated that it could not achieve a 6 ppmvd @ 15 percent O₂ limit, however, and so the NO_x emissions limit was revised to 9 ppmvd @ 15% O₂. The District's BACT Level 1 guideline will be revised based on the latest information available for this source category. District staff surveyed other similar facilities to determine what levels of NO_x emissions have been achieved-in-practice. Both the Tehama County facility and the San Joaquin Valley facility are meeting permit limits of 9 ppmvd @ 15% O_2 . Level 2 achieved-in-practice BACT is therefore 9 ppmvd @ 15% O_2 . District staff then determined whether a more stringent NO_x limit would be technologically feasible and cost-effective. The proposed facility is expected to be able to reliably achieve a limit of 5 ppmvd @ 15% O_2 , and the applicant has no objection as to the cost-effectiveness of this limit. Level 1 BACT is therefore 5 ppm @15% O_2 for this proposed facility. This would be the most stringent NO_x emissions limit achieved by any facility of this type. After the facility demonstrates actual compliance with this limit over 6 months, the limit may be a new achieved-in-practice BACT for this source category. Based on the information discussed above, the proposed permit limit for NO_x of 5 ppmvd @ 15 percent O_2 meets the BACT requirement for NO_x . The corresponding proposed permit limit for ammonia slip is 10 ppmvd @ 15% O_2 . #### Carbon Monoxide (CO) Similar to NO_x controls, the emissions of CO from an internal combustion engine may be controlled using combustion controls and post-combustion controls. Combustion controls reduce incomplete combustion and minimize CO formation. Post-combustion controls remove CO in the exhaust by oxidizing the CO to CO_2 . CO emissions and NO_x emissions are related, and improved CO combustion control will adversely affect the NO_x control (e.g. higher combustion temperature leads to increased thermal NO_x). Combustion controls are usually optimized for NO_x emission control and then evaluated for CO emissions. The tuning process will evaluate the optimal NO_x emissions and also look at conditions where the CO emissions increase dramatically. The BAAQMD BACT guidelines specify the use of an Oxidation Catalyst as the typical technology for BACT Level 1 (Technologically Feasible/Cost Effective) and BACT Level 2 (Achieved-in-practice) for this source category. The guidelines specify a BACT Level 1 limit for CO of 12 ppmvd @ 15% O₂. As with the guidelines' limit for NO_x, however, this CO limit was based on the initial permit limit for the Tehama County facility, which has shown not to be actually achievable by the facility and which has subsequently been revised to 56 ppmvd @ 15% O₂. The District's BACT Level 1 guideline will be revised based on the latest information available for this source category. To determine what level of CO emissions has actually been achieved-in-practice elsewhere, the District examined the current CO emission limits of the Tehama County and San Joaquin Valley facilities. The Tehama County facility is operating with a CO permit limit of 56 ppmvd @ 15% O₂, as noted above, and the San Joaquin Valley facility is operating with a CO permit limit of 20 ppmvd @ 15% O₂. Level 2 achieved-in-practice BACT is therefore no lower than 20 ppmvd @ 15% O₂. The proposed facility is expected to be able to reliably achieve a limit of 13 ppmvd @15% O_2 , and the applicant has no objection as to the cost-effectiveness of this limit. Level 2 BACT is therefore 13 ppmvd @ 15% O_2 for this proposed facility. This would be the most stringent CO emissions limit achieved by any facility of this type. Based on the information discussed above, the proposed permit limit for CO of 13 ppmvd @ 15% O₂ meets the BACT requirement for CO. The proposed facility will also satisfy the BACT requirements of utilizing natural gas as fuel, good combustion practices, and abating each engine with an Oxidation Catalyst. #### Precursor Organic Compounds (POC) Control techniques that minimize CO emissions also reduce the emission of POC from an internal combustion engine. Combustion controls ensure complete combustion and minimize POC formation. Post-combustion controls oxidize the POC in the exhaust to CO₂. The BAAQMD BACT guidelines specify the use of an Oxidation Catalyst as the typical technology for BACT Level 1 and BACT Level 2 for this source category. The guidelines do not specify an emissions limit for BACT Level 1 for POC. They specify a BACT Level 2 limit for POC of 32 ppmvd @ 15 percent O₂, but again this level was based on the initial permit limits for the Tehama County facility, which have subsequently been revised. The District's BACT Level 1 guideline will be revised based on the latest information available for this source category. To determine what level of POC emissions has actually been achieved-in-practice elsewhere, the District examined the current POC emission limits of the Tehama County and San Joaquin Valley facilities. The Tehama County facility is operating with a POC permit limit of 25 ppmvd @ 15% O_2 , as noted above, and the San Joaquin Valley facility is operating with a POC permit limit of 30 ppmvd @ 15% O_2 . Level 2 achieved-in-practice BACT is therefore no lower than 25 ppmvd @ 15% O_2 . The proposed facility is not expected to be able to reliably achieve a limit below 25 ppmvd @ 15% O_2 based on data supplied by the engine manufacturer. There is therefore no basis for establishing a Level 1 BACT level lower than 25 ppmvd @ 15% O_2 for this proposed facility. The facility is expected to be able to reliably achieve 25 ppmvd @ 15% O_2 , however, which satisfies Level 2 BACT. This 25 ppmvd @ 15% O₂ emissions performance is based on operating at 75% load or greater, which is reflected in the proposed permit condition. If these engine generator sets operate at lower load, the concentration of emissions (expressed as ppmvd) will be higher, up to 33 ppmvd @ 15% O₂. But even though the *concentration* of POC in the exhaust stream will be higher in this scenario, the *total mass* of POC that is emitted will be less, because there is less exhaust emitted during low-load operations. Note that the annual POC emissions used in this document were estimated assuming operation at 100% load at all
times. This is a conservative approach because 100% load is the worst-case scenario for POC emissions. Based on the information discussed above, the natural gas fired lean burn engine generator sets will meet the BACT requirements for POC. The use of an Oxidation Catalyst to control POC emissions is also considered to be TBACT for this source category. The CO CEM will be a good indicator of good combustion practice and Oxidation Catalyst condition at each engine generator set and is monitored on a continuous basis. Low CO emissions from the engine generator sets generally correspond to low POC emissions. #### Particulate Matter (PM₁₀/PM_{2.5}) $PM_{10}/PM_{2.5}$ will be controlled by using clean-burning natural gas and good combustion practices. There are no practical post-combustion controls for $PM_{10}/PM_{2.5}$ emissions from this source category. The BAAQMD BACT guidelines do not specify a typical technology or emission limits for this source category for $PM_{10}/PM_{2.5}$. The District therefore looked to emissions information from similar engines at other facilities to make the BACT determination. The first step in the BACT analysis is to review established permit limits to determine an achieved-in-practice BACT level for a specific pollutant from a given source category. For the other pollutants emitted by this source category that are subject to BACT, the permit limits corresponded to the actual emissions data obtained by the District plus an additional compliance margin. The $PM_{10}/PM_{2.5}$ emissions data obtained by the District for this source category was often significantly lower than the permit limits for a given facility. $PM_{10}/PM_{2.5}$ emissions from the Eastshore Energy Center are subject to BACT requirements, and the District reviewed available emissions data to set a permit limit with a resonable compliance margin. The District $PM_{10}/PM_{2.5}$ limit agrees with the actual emissions data available for the source category. The District has determined that with clean-burning natural gas and good combustion practices, the engine generator sets will, on average, be able to maintain PM₁₀/PM_{2.5} emissions below 1.3 lb/hr. This determination is based on emissions data from other facilities equipped with similar lean burn natural gas fired internal combustion engines. The District evaluated the results of 22 source tests from facilities in San Joaquin Valley, Missouri, Kansas, Colorado and Nevada. The average PM₁₀/PM_{2.5} emission rate was 0.4 lb/hr. The maximum PM₁₀/PM_{2.5} emission rate was 1.0 lb/hr. The San Joaquin Valley facility has a permit limit of 0.029 g/bhp-hr that corresponds to 0.27 lb/hr and two engines were tested when the facility started up in 2001. The results of the San Joaquin test demonstrated that those engines could meet that permit limit. The District considered this permit limit for the Eastshore Energy Center, but the San Joaquin permit limit has limited test data and has no compliance margin. Based on review of the available emissions information, the District has determined these lean burn natural gas fired engines proposed for the Eastshore Energy Center, on average, will have PM₁₀/PM_{2.5} emission rates below 1.0 lb/hr. The District recognizes that most of the data reviewed was from new engines with new catalyst beds and that emissions performance can decline as engines and catalysts age. The District has added a 30% compliance margin to the permit limit allowing emissions of 1.3 lb/hr, on average, before the facility is considered in violation of the BACT requirement. The District also recognizes that emissions performance may vary among individual engines, and may vary due to changes in engine operating conditions. Emissions variability may also be due to the source test methods. As a result of all of these factors a specific engine may have a high test result. The high test result may represent emissions over a short period of time, that are not representative of emission rates over a longer period of time. The District has determined that individual engines should be allowed to operate with emission rates of up to 1.9 lb/hr where it is not feasible to meet the 1.3 lb/hr limit as long as facility-wide emissions do not exceed the daily limit for PM₁₀/PM_{2.5}. The manufacturer has guaranteed that the engines can meet a 1.9 lb/hr limit during normal operation not including startup/shutdown. The PM₁₀/PM_{2.5} emissions data for lean burn natural gas fired engine generator set is shown in Table 6. Table 6: PM₁₀/PM_{2.5} Emissions Data for Lean Burn Natural Gas Fired Engine Generator Sets | | | | | Run 1 | Run 2 | |--|--------------|--------|--------------|---------|---------| | Location, Model | Type of Test | Date | Method | (lb/hr) | (lb/hr) | | San Joaquin Valley, Duetz, Unit 3, 4157 HP | Compliance | Oct-01 | EPA 5/202 | 0.11 | 0.08 | | San Joaquin Valley, Duetz, Unit 4, 4157 HP | Compliance | Oct-01 | EPA 5/202 | 0.08 | 0.07 | | Missouri, Wartsila, 18V34SG, Test 1, Unit 12 | Engineering | Jan-02 | EPA 5/202 | 1.316 | 0.543 | | Missouri, Wartsila, 18V34SG, Test 2, Unit 12 | Engineering | Jan-02 | EPA 201A/202 | 0.389 | 0.309 | | Kansas, Wartsila, 18V34SG, Test 3 | Engineering | May-99 | EPA 5/202 | 0.91 | 0.69 | | Colorado, Wartsila, 18V34SG, Test 4, Engine 15 | Engineering | Aug-05 | EPA 5/202 | 0.709 | 0.527 | | Nevada, Wartsila, 20V34SG, Test 5, Engine 12 | Engineering | Sep-05 | EPA 5/202 | 0.496 | 0.54 | | Nevada, Wartsila, 20V34SG, Test 5, Engine 13 | Engineering | Sep-05 | EPA 5/202 | 0.477 | 0.449 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 1 | Compliance | Nov-05 | EPA 5/202 | 0.24 | 0.29 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 2 | Compliance | Nov-05 | EPA 5/202 | 0.24 | 0.17 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 3 | Compliance | Nov-05 | EPA 5/202 | 0.2 | 0.15 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 4 | Compliance | Nov-05 | EPA 5/202 | 0.2 | 0.11 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 5 | Compliance | Nov-05 | EPA 5/202 | 0.17 | 0.22 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 6 | Compliance | Nov-05 | EPA 5/202 | 0.36 | 0.53 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 7 | Compliance | Nov-05 | EPA 5/202 | 0.26 | 0.36 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 8 | Compliance | Nov-05 | EPA 5/202 | 0.29 | 0.27 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 9 | Compliance | Nov-05 | EPA 5/202 | 0.51 | 0.66 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 10 | Compliance | Nov-05 | EPA 5/202 | 0.59 | 0.72 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 11 | Compliance | Nov-05 | EPA 5/202 | 0.81 | 0.46 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 12 | Compliance | Nov-05 | EPA 5/202 | 0.28 | 0.29 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 13 | Compliance | Nov-05 | EPA 5/202 | 0.26 | 0.17 | | Nevada, Wartsila, 20V34SG, Test 6, Engine 14 | Compliance | Nov-05 | EPA 5/202 | 0.19 | 0.26 | Average Maximum of Averages Minimum of Averages Standard Deviation of Averages Maximum Single Run Minimum Single Run Standard Deviation of All Test Runs The source test data from other similar facilities that the District reviewed, in conjunction with the manufacturer's guaranteed performance level, show that Wartsila natural gas fired internal combustion engines have achieved emissions below 1.3 lb/hr on average, and below 1.9 lb/hr for individual engines. The District is therefore including these emission rates as BACT Level 2 permit limits. Furthermore, these limits are technologically feasible and cost-effective. The emissions data from similar facilities shows that these permit limits are technologically feasible. The cost of achieving them is zero, as there is no add-on control equipment required or other costs the owner/operator would have to incur to meet these limits over and above the costs of normal operation. These permit limits meet the requirements of BACT 1 as well as the requirements of achieved-in-practice BACT Level 2. It should be noted that this BACT determination represents an evolution of the District's analysis from what was set forth in the PDOC in April of 2007. The PDOC stated that there was only limited test data available form similar engines, and that "the District has determined that it cannot establish a level of PM₁₀ emissions that has been reliably achieved-in-practice from any of the facilities." (PDOC, pg. 15) The District's position on this issue has evolved based on additional information it has received after issuance of the PDOC. This information showed that in fact, emission rates of 1.3 lb/hr on average and up to 1.9 lb/hr maximum have been achieved-in-practice at other facilities. In addition, establishing a numerical BACT emissions limit for PM₁₀/PM_{2.5} emissions is somewhat of a departure from the District's past practice with respect to natural gas combustion sources. Historically, the District has expressed BACT for such sources as the use of clean burning natural gas and the use of good combustion practices, not as a numerical emissions limit (although the District did impose numerical limits in accordance with "cumulative increase" requirements). The engine generator sets are different from other natural gas fired combustion sources utilized at peaking facilities such as simple cycle gas turbines. These engine generator sets have the potential to emit significant quantities of PM₁₀/PM_{2.5} emissions, and may emit more PM₁₀/PM_{2.5} emissions per unit of electricity produced than other electrical generation technologies. Based on this information, and after considering comments from the California Air Resources Board and the California Energy Commission, the District is imposing numerical BACT limits for the natural gas fired engine generator sets at the proposed facility. This approach is not necessarily appropriate for other types of natural gas combustion sources. The District is therefore establishing BACT permit conditions
that would limit PM₁₀/PM_{2.5} emissions to 1.3 lb/hr. If an engine is tested and found to have emissions above 1.3 lb/hr, the owner/operator will have to demonstrate that the engine has been properly installed, operated, and maintained to minimize emissions. The owner/operator will also be required to conduct a retest of the high emitting engine. If the results of the retest remain above 1.3 lb/hr, then the owner/operator may continue to operate the engine as long as emissions from that engine do not exceed 1.9 lb/hr, the facility-wide daily emissions limit that is based on 1 cold start and 23.5 hours at 1.3 lb/hr for each engine is not exceeded and the owner/operator has demonstrated to the District's satisfaction that the engine has been installed, operated, and maintained properly. The facility-wide PM₁₀/PM_{2.5} emissions limit is 461.65 lb/day, which corresponds to one cold startup and 23.5 hours of normal operation at 1.3 lb/hr for all fourteen engines. The annual permit limit corresponds to 300 cold startup per engine and 3807.5 hours of normal operation at 1.3 lb/hr for each engine. The engines are only allowed to burn PUC quality natural gas as a BACT condition. Based on the information discussed above, the natural gas fired engine generator sets will meet BACT for PM₁₀/PM_{2.5} utilizing PUC quality natural gas and good combustion practices and by meeting hourly, daily, and annual emission caps. In addition, the CO CEM will be a good indicator of good combustion practice at each engine generator set and is monitored on a continuous basis. Low CO emissions from the engine generator sets generally correspond to low particulate emissions since each are products of incomplete combustion. #### b. BACT Determination For Emergency Standby Generator Set; Diesel Engine Based upon 24 hour per day operation under emergency conditions, the proposed emergency standby generator set diesel engine triggers BACT for NO_x and CO, since its potential to emit for each of those pollutants exceeds 10 pounds per day. (Operation for a full day under emergency conditions is highly unlikely, but for purposes of the BACT analysis, the District utilizes a worst-case operating scenario.) The emergency standby generator will only be used when the proposed power plant has no natural gas fired engine generator sets operating and there is a power outage and no electricity is available to the facility. The emergency standby generator supplies the necessary power to start one of the natural gas fired engine generator sets and then is no longer necessary. It is not anticipated that the emergency standby generator would ever need to be operated for longer than one hour during an emergency. The District has adopted BACT guidelines for internal combustion engines, which involve a two-step analysis. The first step determines what type of engine can be used. For most applications, the District requires internal combustion engines to be low emitting, spark-ignited, gas-fueled engines with lean burn combustion, or with rich-burn combustion with non-selective catalytic reduction, or to be substituted with an electric motor. In certain limited instances where those other alternatives are not practicable, such as with engines used exclusively for emergency use during involuntary loss of power, the District allows the use of diesel engines. (*See* District BACT Workbook Document 96.1.2., reference note b.) The use of a diesel engine at the proposed Eastshore facility complies with this BACT requirement because it is for backup emergency use and will not be used for routine generating purposes. The second step of the BACT analysis determines the amount of emissions that are allowed from the engine. In applications where diesel engines may be used, Level 2 achieved-in-practice BACT is based on the best performance of commercially available diesel engines in similar applications, as certified by the California Air Resources Board (CARB). These Level 2 BACT emission limits are set forth in Table 7. It is technically feasible to achieve lower emissions by installing add-on control devices such as catalytic oxidation or selective catalytic reduction systems, which are identified in the District's guidelines as Level 1 BACT. But such add-on control devices are not cost-effective for emergency standby engines due to the limited hours of operation for these engines. District regulations therefore do not require Level 1 BACT for the proposed emergency standby generator at the Eastshore facility, as long as Level 2 BACT is met. The proposed Eastshore emergency standby diesel engine will meet or exceed the District's BACT Level 2 requirements. S-15 has an emission rate of diesel particulate matter that also complies with the District's TBACT guidelines. The current District BACT Level 2 limits and the specifications for the proposed engine are summarized in Table 7. ### Table 7: District BACT Limits for Proposed Emergency Standby Generator Set, Diesel Engine | Pollutant | District BACT Guideline | Engine ^b Specifications | |---------------------|-------------------------|------------------------------------| | 1 Ollutalit | (g/bhp-hr) ^a | (g/bhp-hr) | | NO_x (as NO_2) | 6.9 | 2.62 | | CO | 2.75 | 2.31 | | POC | 1.5 | 0.14 | | PM_{10} | 0.15 | 0.11 | ^aBACT 2 (achieved-in-practice) per District BACT Guideline 96.1.2, "IC Engine –Compression Ignition ≥ 275 hp output rating". #### 2. Emission Offsets District regulations require that new facilities must provide Emission Reduction Credits (ERCs) to offset the increases in air emissions that they will cause. ERCs are generated when old facilities are shut down, or when sources are controlled below regulatory limits. The emissions reductions granted by the District are used to offset the increases from new facilities, so that there will be no overall increase in emissions from facilities subject to this offset program. #### a. Offset Requirements For The Proposed Eastshore Energy Center #### POC and NO_x District Regulation 2-2-302 requires that federally enforceable emission offsets must be provided for POC and NO_x (as NO₂) emission increases from permitted sources at facilities that will emit 10 tons per year or more on a pollutant-specific basis. For facilities that will emit more than 35 tons per year of NO_x (as NO₂), offsets must be provided by the applicant at a ratio of 1.15 to 1.0. The proposed Eastshore facility will emit more than 35 tons per year of both of those pollutants, and so it is required to offset all POC and NO_x emissions at a ratio of 1.15 to 1.0. For NO_x, the proposed facility will be permitted to emit 54.353 tons per year, which will require offsets of 62.506 tons per year. For POC, the proposed facility will be permitted to emit 76.110 tons per year, which will require offsets of 87.527 tons per year. The applicant has elected to provide POC emission reduction credits for all of the required offsets for POC and NO_x, as provided for in District Regulation 2-2-302.2. In total, 150.033 tons per year of offsets will be required. ^bCalifornia Air Resources Board Executive Order U-R-001-0287. #### PM₁₀ and SO₂ District Regulation 2-2-303 requires that emission offsets must be provided for PM_{10} and SO_2 emission increases at new facilities that will be permitted to emit more than 100 tons per year of PM_{10} or SO_2 on a pollutant-specific basis. The proposed Eastshore Energy Center will not emit more than 100 tons of either of these pollutants, and so it is not subject to this requirement. Regulation 2-2-303 does allow for the voluntary offsetting of SO_2 emission increases of less than 100 tons per year, but the applicant has not opted to provide such voluntary emission offsets. #### b. Timing for Provision of Offsets Pursuant to District Regulation 2-2-311, the applicant must provide the required valid emission reduction credits to mitigate the emission increases for the facility prior to the issuance of the Authority to Construct. Pursuant to District Regulation 2, Rule 3, "Power Plants," the Authority to Construct will be issued if the California Energy Commission (CEC) certifies the proposed power plant. #### c. Offset Package Eastshore Energy, LLC currently is negotiating for sufficient valid emission reduction credits to offset the emission increases from the permitted sources proposed for the Eastshore Energy Center. Table 8 below summarizes the current offset obligation of the Eastshore Energy Center and the quantity of valid emission reduction credits (ERCs) under negotiation by Eastshore Energy, LLC. The emission reduction credits presented in Table 8 exist as federally enforceable, banked emission reduction credits that have been reviewed for compliance with District Regulation 2, Rule 4, "Emissions Banking", and were subsequently issued as banking certificates by the BAAQMD. If the quantity of offsets issued under any certificate exceeded 35 tons per year for any pollutant, the application is required to fulfill the public notice and public comment requirements of District Regulation 2-4-405. Accordingly, such applications were reviewed by the California Air Resources Board, U.S. EPA, and adjacent air pollution control districts to insure that all applicable federal, state, and local regulations were satisfied. Note that the specific offset package is still under negotiation and is subject to change, as the offset credits do not actually have to be provided until such time as the Authority to Construct is issued. The amount of credits that must be submitted will not change, however. Table 8: Emission Reduction Credits Identified by Eastshore Energy, LLC as of July 2007 (tons of POC/yr) | Emission Reduction Credit | Tons of POC | |---|-------------| | Banking Certificate # | per year | | 823, Crown Cork & Seal Company ^a , Union City | 71.000 | | 1015, Koch Supply and Trading LP ^b , Fremont |
22.778 | | 1016, Koch Supply and Trading LP ^c , San Leandro | 15.518 | | 1017, Koch Supply and Trading LP ^d , San Leandro | 4.4 | | 1022, Koch Supply and Trading LP ^e , Cupertino | 19.718 | | 1019, Koch Supply & Trading LP ^f , Milipitas | 15.856 | | 1006, Koch Supply and Trading LP ^g , Union City | 23.4 | | Total ERCs Identified | 172.67 | | Total Offsets Required | 150.033 | | Surplus Offset Balance | +22.637 | ^aoriginal certificate #51, Application No. 30496, Continental Can Company, issued 10/21/86 ^boriginal certificate #234, Application No.9507, Tri Valley Growers Container Division, Inc., issued 12/1/93. The original certificate is the company and the location of the emission reduction that resulted from closing down a source or controlling a source beyond what current regulations required at the time. The certificate numbers are changed when a new owner obtains an Emission Reduction Credit located in the District Bank. The certificate numbers in Table 8 are the current valid numbers with the current owner. Original Certificate #51 was issued in 1986 after the Continental Can Company in Union City shutdown. Twenty sources were shutdown to generate the Precursor Organic Compound (POC) Emission Reduction Credits. The sources were Can Coating and Printing operations and associated drying ovens. Original Certificate #234 was issued in 1993 after Tri Valley Growers Container Division in Fremont modified three Die Presses. The facility produced metal cans. The modification was changing some of the materials in the process to materials with lower POC content, and this modification resulted in lower emissions. The emission reductions at this facility were used to generate POC Emission Reduction Credits. ^coriginal certificate #234, Application No.9507, Tri Valley Growers Container Division, Inc., issued 12/1/93. ^doriginal certificate #56, Application No. 30949, International Paper Company, issued 10/7/85 ^eoriginal certificate #136, Application No. 6202, Kaiser Aluminum & Chemical Company, issued 3/26/92 foriginal certificate #573, Application No. 18297, LSI Logic Corporation, issued 9/22/98 goriginal certificate #889, Application No. 6821, United States Pipe & Foundry Company, LLC, issued 6/6/03 Original Certificate #56 was issued in 1985 after International Paper in San Leandro closed a Printing facility. The sources of POC emissions were the ink, varnish, and cleanup solvents associated with printing presses. Original Certificate #136 was issued in 1992. The Kaiser Aluminum & Chemical Corporation in Cupertino closed their Foil Production Plant in 1990. The emission reductions from the closure of eleven sources were used to generate these Precursor Organic Compound Emission Reduction Credits. Original Certificate #573 was issued in 1998. LSI Logic Corporation in Milpitas closed two sources down in 1997. One source was a back end fabrication area and the other was solvent cleaning stations. Original Certificate #889 was issued in 2003 after U.S. Pipe & Foundry Company in Union City switched from a solvent based coating to a water based coating. The coatings were used to paint pipes at the facility. The emission reductions from the material change were used to generate POC Emission Reduction Credits. It should be noted that in the case of POC and NO_x offsets, District regulations do not require consideration of the location of the source of the emission reduction credits relative to the location of the proposed emission increases that will be offset. This is because POC and NO_x are ozone precursors, which are regulated as part of the District's efforts to control regional smog. Because ozone creation is a regional phenomenon, emissions decreases in one area of the region will be effective in offsetting emissions increases in other areas of the region. The location of the Emission Reduction Credits is provided for informational purposes. #### 3. PSD Air Quality Impact Analysis BAAQMD Regulation 2-2-414.1 requires proposed permits for certain large facilities to undergo an emissions modeling analysis for purposes of the District's "Prevention of Significant Deterioration" (PSD) program. The categories of projects subject to this requirement are outlined in District regulations 2-2-304, 305, 306, and 308. The proposed Eastshore facility does not fall into any of these categories, and therefore does not require a PSD modeling analysis. #### B. Health Risk Assessment Pursuant to the BAAQMD Regulation 2, Rule 5, a health risk screening must be conducted to determine the potential impact on public health resulting from the worst-case emissions of toxic air contaminants (TACs) from the Eastshore Energy Center. The potential TAC emissions (both carcinogenic and non-carcinogenic) from the Eastshore Energy Center are summarized in Table 4. The health risk screening analysis performed by the District Toxics Evaluation Section was prepared in accordance with guidelines adopted by Cal/EPA's Office of Environmental Health Hazard Assessment (OEHHA). In accordance with the requirements of the BAAQMD Regulation 2, Rule 5, the impact on public health due to the emission of these compounds was assessed utilizing approved air pollutant dispersion models. The health risk screening analyis results are shown in Table 9. **Table 9: Health Risk Screening Analysis Results** | Sources | Multi-pathway Carcinogenic Risk (risk in one million) | Chronic
Hazard Index ^a | Acute
Hazard Index ^a | |--|---|--------------------------------------|------------------------------------| | Residential Receptor | | | | | 14 Natural Gas Engine Generator Sets | 0.32 | 0.005 | 0.028 | | Emergency Standby Generator Set ^b | 0.0113 | 0.0000068 | ND | | Worker Receptor | | | | | 14 Natural Gas Engine Generator Sets | 3.54 | 0.065 | 0.066 | | Emergency Standby Generator Set ^b | 0.63 | 0.00045 | ND | | Maximum Facility Risk: | 3.856^{b} | 0.065 | 0.066 | ^aPer BAAQMD Health Risk Screening Analysis Guidelines, acrolein is not included in these Health Risk Assessment Results. Currently, CARB does not have certified emission factors or an analytical test method for acrolein. Therefore, since the appropriate tools needed to implement and enforce acrolein emission limits are not available, the District does not conduct a HRSA for emissions of acrolein. In addition, due to the significant uncertainty in the derivation, OEHHA is currently re-evaluating the acute REL for acrolein. When the necessary tools are developed, the District will re-evaluate this specific evaluation procedure and the HRSA guidelines will be revised. For this project, however, the District did perform an analysis of acrolein impacts from the natural gas engine generator sets, and the results were in compliance with Regulation 2, Rule 5 requirements. ^bBecause the location of maximum impact for the diesel engine does not coincide with the locations of maximum impact for the other sources, the carcinogenic risk numbers do not add directly to determine the maximum facility cancer risk shown Pursuant to the BAAQMD Regulation 2, Rule 5, the estimated potential increased carcinogenic risk attributed to this project is considered acceptable since it is less than 10 in one million and the Sources are in compliance with the current Toxics Best Available Control Technology (TBACT) requirements, as explained above. The chronic hazard index attributed to the emission of non-carcinogenic air contaminants is considered acceptable since it is less than 1.0. Therefore, the proposed Eastshore Energy Center is deemed to be in compliance with the BAAQMD Regulation 2, Rule 5. Please see the Appendices for further discussion. #### C. Other Applicable District Rules and Regulations #### **Regulation 1, Section 301: Public Nuisance** None of the project's proposed sources of air contaminants are expected to cause a public nuisance as defined in District Regulation 1, Section 301 with respect to any impacts resulting from the emission of air contaminants regulated by the District. #### Regulation 2, Rule 1, Sections 301 and 302: Authority to Construct and Permit to Operate Pursuant to Regulation 2-1-301 and 2-1-302, the Eastshore Energy, LLC has submitted an application to the District to obtain an Authority to Construct and Permit to Operate for the proposed S-1 through S-14 Natural Gas Fired Engine Generator Sets, and S-15 Emergency Standby Generator Set; Diesel Engine. #### Regulation 2, Rule 1, Sections 426: CEQA-Related Information Requirements As the lead agency under CEQA for the proposed Eastshore Energy Center, the California Energy Commission (CEC) will satisfy the CEQA requirements of Regulation 2-1-426.2.1 by producing their Final Certification, which serves as an EIR-equivalent pursuant to the CEC's CEQA-certified regulatory program in accordance with CEQA Guidelines Section 15253(b) and Public Resource Code Sections 21080.5 and 25523. The District supports the CEC's certification process and is participating in it with respect to air quality issues. #### **Regulation 2, Rule 2:** New Source Review The Eastshore Energy Center Authority to Construct Permit Application/Determination of Compliance will comply with the requirements of Regulation 2, Rule 2. The applicable requirements of Regulation 2, Rule 2, are addressed in detail in Section A above. #### **Regulation 2, Rule 3:** Power Plants Pursuant to Regulation 2-3-405, this Final Determination of Compliance (FDOC) serves as the APCO's final determination that the proposed power plant will meet the requirements of all applicable BAAQMD, state, and federal regulations. The FDOC contains proposed permit conditions to ensure compliance with those regulations. Pursuant to Regulation 2-3-404, the Preliminary Determination of Compliance (PDOC) was subject to the public notice, public comment, and public inspection requirements contained in
Regulations 2-3-404, 2-2-406 and 2-2-407. #### **Regulation 2, Rule 5:** New Source Review of Toxic Air Contaminants The Eastshore Energy Center Authority to Construct Permit Application/Determination of Compliance will comply with the requirements of Regulation 2, Rule 5. The natural gas fired engine generator sets S-1 through S-14 and the Emergency Standby Generator S-15 are considered to meet Toxics Best Available Control Technology (TBACT) requirements. S-1 through S-14 are abated by an Oxidation Catalyst that will reduce organic compound emissions. S-15 has an emission rate of diesel particulate matter that complies with the District's TBACT guidelines. The applicable requirements of Regulation 2, Rule 5, are addressed in more detail in Section B above. #### **Regulation 2, Rule 6:** Major Facility Review The owner/operator of the Eastshore Energy Center is not required to submit an application to the BAAQMD for a major facility review permit since the facility is not subject to Regulation 2, Rule 6 requirements. #### **Regulation 2, Rule 7:** Acid Rain The Eastshore Energy Center Engine Generator Sets are not subject to the permit program requirements of Title IV of the federal Clean Air Act. The requirements of the Acid Rain Program are outlined in 40 CFR Part 72. The Acid Rain program applies to sources with electrical generating units greater than 25 MW. Each engine generator set has a electrical generation capacity of 8.4 MW and therefore the units are not subject to the permit program portions of 40 CFR Part 72. The facility may be subject to portions of 40 CFR Part 72 (Provisions of §§72.2 through 72.6, and §§72.10 through 72.13 may apply to this facility). The facility is expected to comply with the applicable sections of 40 CFR Part 72. #### **Regulation 6:** Particulate Matter and Visible Emissions Through the use of proper combustion practices, the combustion of natural gas at the proposed natural gas fired engine generator sets and the diesel fired emergency standby generator set are not expected to result in visible emissions. Specifically, the facility's combustion sources are expected to comply with Regulation 6, including sections 301 (Ringelmann No. 1 Limitation), 302 (Opacity Limitation) with visible emissions not to exceed 20% opacity, and 310 (Particulate Weight Limitation) with particulate matter emissions of less than 0.15 grains per dry standard cubic foot of exhaust gas volume. As calculated in accordance with Regulation 6-310.3, the grain loading resulting from the simultaneous operation of each engine generator set is 0.015 gr/dscf @ 6% O₂. See Appendices for grain loading calculations. Particulate matter emissions associated with the construction of the facility are exempt from District permit requirements but are subject to Regulation 6. It is expected that the conditions of certification imposed by the CEC will include requirements for construction activities that will require the use of water and/or chemical dust suppressants to minimize PM_{10} emissions and prevent visible particulate emissions. #### **Regulation 7:** Odorous Substances Regulation 7-302 prohibits the discharge of odorous substances, which remain odorous beyond the facility property line after dilution with four parts odor-free air. Regulation 7-302 limits ammonia emissions to 5000 ppmvd. Because the ammonia slip emissions from the proposed natural gas fired engine generator sets will each be limited by permit condition to 10 ppmvd @ 15% O₂, the facility is expected to comply with the requirements of Regulation 7. #### **Regulation 8:** Organic Compounds The natural gas fired engine generator sets are exempt from Regulation 8, Rule 2, "Miscellaneous Operations" per 8-2-110 since natural gas will be fired exclusively at those sources. The emergency standby generator set diesel engine will comply with Regulation 8-2-301 since its emissions will contain a total carbon concentration of less than 300 ppmvd. The use of solvents for cleaning and maintenance at the Eastshore Energy Center is expected to comply with Regulation 8, Rule 4, "General Solvent and Surface Coating Operations" section 302.1 by emitting less than 5 tons per year of volatile organic compounds. #### **Regulation 9:** Inorganic Gaseous Pollutants #### Regulation 9, Rule 1, Sulfur Dioxide This regulation establishes emission limits for sulfur dioxide from all sources and applies to the combustion sources at this facility. Section 301 (Limitations on Ground Level Concentrations) prohibits emissions which would result in ground level SO₂ concentrations in excess of 0.5 ppmvd continuously for 3 consecutive minutes, 0.25 ppmvd averaged over 60 consecutive minutes, or 0.05 ppmvd averaged over 24 hours. Section 302 (General Emission Limitation) prohibits SO₂ emissions in excess of 300 ppmvd. The natural gas fired engine generator sets and the emergency standby generator diesel engine are not expected to cause ground level SO₂ concentrations in excess of the limits specified in Regulation 9-1-301 and will comply with section 302. California law mandates the use of ultra-low sulfur diesel fuel having a sulfur content of 0.0015% by weight. ### Regulation 9, Rule 8, Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines The proposed natural gas fired engine generator sets will comply with the emission limits contained in Regulation 9-8-301, and all other requirements of Regulation 9, Rule 8. The proposed 369 hp emergency standby generator set diesel engine will comply with the emission limits contained in Regulation 9-8-304 (Effective 2012), and all other requirements of Regulation 9, Rule 8. #### **Regulation 10:** Standards of Performance for New Stationary Sources Regulation 10 incorporates by reference the provisions of Title 40 CFR Part 60. The applicable subparts of 40 CFR Part 60 include Subpart A, "General Provisions", and Subpart IIII "Standards of Performance for Stationary Compression Ignition Internal Combustion Engines". Subpart IIII has not been incorporated into Regulation 10 at this time. The emergency standby generator set diesel engine complies with all applicable standards and limits defined in these regulations. The applicable emission limitations are shown in Table 10. **Table 10: Applicable New Source Performance Standards** | Source | Requirement | Emission Limitation | Compliance Verification | |--|----------------------------|--|---| | Emergency
Standby
Generator Set
Diesel Engine | 40 CFR 60,
Subpart IIII | Requires diesel engines
subject to this subpart to meet
EPA Tier Emission Levels | Proposed Diesel Engine
meets Tier 3 Requirements | The facility is expected to comply with the requirements in 40 CFR Part 60 Subpart IIII. #### **D.** State Requirements The facility is subject to the Air Toxic "Hot Spots" Program requirements contained in the California Health & Safety Code Section 44300 et seq. The facility will submit inventory updates as required. The facility is subject to the Public Nuisance Provisions contained in the California Health & Safety Code Section 41700. The facility is expected to comply with these provisions. The emergency standby generator set diesel engine is subject to the Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition Engine contained in Title 17 of the California Code of Regulations Section 93115. S-15 will comply with the Airborne Toxics Control Measure for Stationary Compression Ignition Engines (ATCM). The allowable operating hours and recordkeeping requirements contained in the ATCM will be included in the Permit Conditions below. #### **E.** Federal Requirements The facility is not subject to the current version (March, 2007) of the National Emission Standards for HAPs for Stationary Reciprocating Internal Combustion Engines (RICE) contained in 40 CFR Part 63 Subpart ZZZZ. The facility is not a major source of HAPs. #### V Permit Conditions The following permit conditions are proposed to ensure that the proposed project complies with all applicable District, State, and Federal Regulations. The conditions limit operational parameters such as fuel use, stack gas emission concentrations, mass emission rates and concentrations. The proposed permit conditions also specify abatement device operation and performance levels. To aid enforcement efforts, conditions specifying emission monitoring, source testing, and record keeping requirements are included. Furthermore, pollutant mass emission limits (in units of ton/yr) are proposed to insure that annual emission rate limitations are not exceeded. To provide maximum operational flexibility, no limitations are proposed for the type, or quantity of engine generator set start-ups or shutdowns. Instead, the facility must comply with short term emission limits and annual (consecutive twelve-month) mass emission limits at all times. Compliance with CO and NO_x limitations will be verified by continuous emission monitors (CEMs) that will be in operation during all engine generator set operating modes, including start-up and shutdown. If the CO and NO_x CEMs are not capable of accurately assessing engine start-up and shutdown mass emission rates due to variable O₂ content and the differing response times of the O₂ and NO_x monitors, then start-up and shutdown mass emission rates will be based upon annual source test results. Compliance with POC, SO₂, and PM₁₀ mass emission limits will be verified by using District approved emission factors developed or validated by site-specific source testing. In addition to permit conditions that apply to steady-state operation of each natural gas fired engine generator set, conditions are being established that govern equipment operation during the initial
commissioning period when the natural gas engine generator sets will operate without their SCR systems and/or oxidation catalysts in place. Commissioning activities include, but are not limited to the testing of the natural gas fired engines and adjustment of control systems. Proposed permit conditions 1 through 6 apply to this commissioning period and are intended to minimize emissions during the commissioning period. #### **Eastshore Energy Center Permit Conditions** #### (A) Definitions: Calendar Day: Any continuous 24-hour period beginning at 12:00 AM or 0000 hours Year: Any consecutive twelve-month period of time Heat Input: All heat inputs refer to the heat input at the higher heating value (HHV) of the fuel, in BTU/scf Operating Hours: Period of time during which fuel is flowing to a unit, measured in hours and minutes. MM BTU: Million British Thermal Units Engine BHP during operation (Electrical generator MW) x (1341 bhp/MW) x (1.0319 loss factor) Engine Start-up: An engine start-up that occurs when the SCR catalyst bed is below minimum operating temperature as specified by the abatement device manufacturer. The maximum time for startup shall be 30 minutes. Corrected Concentration: The concentration of pollutants shall be corrected to a standard value of 15% O₂ by volume on a dry basis. The following equation shall be used to calculate the corrected concentration. $X@15\%O_2 = (20.95 - 15)/(20.95 - Stack O_2\%) \times X@Stack O_2\%$ Commissioning Activities: All testing, adjustment, tuning, and calibration activities during the commissioning period recommended by the equipment manufacturers and the Eastshore Energy Center construction contractor to insure safe and reliable steady state operation of the engines, abatement equipment, and associated electrical delivery systems Commissioning Period: The Period shall commence when all mechanical, electrical, and control systems are installed and individual system start-up has been completed, or when an engine is first fired, whichever occurs first. The period shall terminate when the source has completed performance testing, is available for commercial operation, and has initiated sales to the power exchange. The commissioning period shall not exceed 180 days under any circumstances. The period shall be determined separately for each engine generator set. CEM Continuous Emission Monitor CEC CPM: California Energy Commission Compliance Program Manager Engine Shutdown: The time period corresponding to the control system request to shutdown a specific engine until the engine generator set ceases operation. The maximum time for a shutdown shall be 8.5 minutes. **Total Particulate Matter** Sum of the filterable and condensable fractions of an EPA Method 5/Method 202 (or other District approved method) sampling train. When using EPA Method 5/Method 202 to demonstrate compliance with these permit conditions, EPA Method 5/Method 202 shall be used to determine the stack gas concentration of particulate matter. The mass emission rate shall be calculated using EPA Method 19 to determine the stack gas flowrate during the source test run. PM_{10} Particulate matter with an aerodynamic diameter of 10 microns or smaller. As applicable, source test methods (District approved) must include the condensable fraction when measuring the stack gas particulate concentration and mass emission rate. $PM_{2.5}$ Particulate matter with an aerodynamic diameter of 2.5 microns or smaller. As applicable, source test methods (District approved) must include the condensable fraction when measuring the stack gas particulate concentration and mass emission rate. SO_2 Sulfur Dioxide (SO₂) #### (B) Applicability: Conditions 1 through 6 shall only apply during the commissioning period as defined above. Unless otherwise indicated, Conditions 7 through 25 shall apply after the commissioning period has ended. Conditions 26 through 30 shall apply at all times. #### (C) Conditions: #### Conditions for the Engines S-1 through S-14 during the Commissioning Period - 1. The owner/operator of the Eastshore Energy Center (EEC) shall minimize emissions of carbon monoxide and nitrogen oxides from S-1 through S-14 Lean Burn Internal Combustion Engines to the maximum extent possible during the commissioning period. - a. At the earliest feasible opportunity, in accordance with the recommendations of the equipment manufacturers and the construction contractor, the owner/operator shall tune each engine S-1 through S-14 after first fire to minimize the emissions of carbon monoxide and nitrogen oxides during commissioning. - b. At the earliest feasible opportunity, in accordance with the recommendations of the equipment manufacturers and the construction contractor, the owner/operator shall install, adjust, and operate A-1 through A-14, SCR Systems, and A-15 through A-28, Oxidation Catalyst systems, to minimize the emissions during commissioning. - c. The owner/operator of the EEC shall submit a plan to the District Engineering Division and the CEC CPM prior to the firing of any of the engines that shall describe the process to be followed during the commissioning of each engine. The plan shall include a description of each commissioning activity, the anticipated duration of each activity in hours, and the purpose of the activity. The activities described shall include, but not be limited to, engine tuning activities (such as air/fuel ratio settings, engine timing, turbocharger pressure); the installation, tuning, and operation of the SCR systems and oxidation catalysts; the installation, calibration, and testing of the CO and NO_x continuous emission monitors; and any activities requiring the firing of the IC engines without abatement by their respective abatement devices. None of the engines shall be fired sooner than 28 days after the District receives the commissioning plan. (Basis: BACT, Offsets) - 2. During the commissioning period, the owner/operator of the EEC shall demonstrate compliance with Condition 6 through the use of properly operated and maintained continuous emission monitors and data recorders for the following parameters: - a. Firing hours for each engine - b. Fuel flow rates to each engine - c. Stack gas nitrogen oxide emission concentrations at P-1 through P-14 - d. Stack gas carbon monoxide emission concentrations at P-1 through P-14 - e. Stack gas oxygen concentrations at P-1 through P-14 The monitored parameters shall be recorded at least once every 15 minutes (excluding normal calibration periods or when the monitored source is not in operation) for the engines. The owner/operator shall use District-approved methods to calculate heat input rates, NO_x mass emission rates, carbon monoxide mass emission rates, and NO_x and CO emission concentrations, summarized for each calendar day. All records shall be retained on site for at least 2 years from the date of entry and made available to District staff upon request. (Basis: BACT, Offsets) 3. The owner/operator shall install, calibrate, and make operational continuous emission monitors for NO_x, CO and O₂ for each engine prior to first firing of that engine. After first firing of an individual engine, the detection range of the continuous emission monitor for that engine shall be adjusted as necessary to accurately measure the resulting range of CO and NO_x emission concentrations. The type, specifications, and location of these monitors shall be subject to District review and approval. (Basis: BACT, Offsets) 4. The owner/operator shall operate the facility such that the total number of firing hours of each Engine S-1 through S-14 without abatement of nitrogen oxide and CO emissions by its SCR System and Oxidation Catalyst System shall not exceed 300 hours per engine during the commissioning period. Such operation of S-1 through S-14 without abatement shall be limited to discrete commissioning activities that can only be properly executed without the SCR or Oxidation Catalyst Systems fully operational. Upon completion of these activities, the owner/operator shall provide written notice to the District Engineering Division and Enforcement and Compliance Division and the unused balance of the 300 firing hours per engine without abatement shall expire. (Basis: BACT, Offsets) - 5. The owner/operator shall use District approved calculation methods to estimate the total mass emissions of NO_x (as NO₂), CO, POC, PM₁₀, and SO₂ that are emitted by Engines S-1 through S-14 and S-15 during the commissioning and facility startup period. These emissions count towards the consecutive twelve-month emission limitations specified in Condition 14. Emission totals shall include emissions during the startup and shutdown of the engines. (Basis: BACT, Offsets) - 6. The owner/operator shall not operate the engines S-1 through S-14 in a manner such that the combined pollutant emissions from these sources will exceed the following limits during the commissioning period. These emission limits shall include emissions resulting from the start-up and shutdown of the engines S-1 through S-14. NO_x (as NO₂) 3058.4 pounds per calendar day 4033.5 pounds per calendar day POC (as CH₄) 975.1 pounds per calendar day Total Particulate Matter 757.8 pounds per calendar day 757.8 pounds per calendar day PM_{2.5} 757.8 pounds per calendar day SO₂ 79.53 pounds per calendar day (Basis: BACT, Offsets) #### Conditions for the Engines S-1 through S-14 Post Commissioning Period - 7. The owner/operator shall ensure that S-1 through S-14 IC Engines are fired on PUC natural gas exclusively. (Basis: BACT for PM₁₀, Cumulative Increase for SO₂) - 8. The Owner/operator shall operate each engine such that the heat input rate for each engine S-1 through S-14 is less than or equal to 72.8 MMBtu/hr (HHV, 72.1 MMBtu/hr for Annual Average), averaged over an hour period, including startup/shutdown periods. The owner shall obtain heating value data for the natural gas on a monthly basis from the
gas supplier. The heating value data shall be used to calculate a monthly average for heating value that may be used to demonstrate compliance with these conditions. (Basis: BACT, Cumulative Increase) - 9. The Owner/operator shall operate each engine such that the heat input rate for each engine S-1 through S-14 is less than or equal to 1730 MMBTU/day per calendar day, including startups/shutdowns. (Basis: Cumulative Increase) - 10. The Owner/operator shall operate each engine such that the heat input rate for all engines S-1 through S-14 combined is less than or equal to 4,036,480 MMBTU/yr on a rolling 12-month average basis, including startups/shutdowns. (Basis: Offsets) - 11. The owner/operator shall limit the total annual operating hours for engines S-1 through S-14 to 56,000 hours. (Basis: Offsets, Cumulative Increase) - 12. The owner/operator shall properly operate and maintain the A-1 to A-14 Selective Catalytic Reduction (SCR) Systems, except as provided during the Commissioning Period, whenever fuel is combusted at the corresponding source S-1 through S-14, respectively, and the individual catalyst bed has reached minimum operating temperature specified by the abatement device manufacturer. The owner/operator shall not inject ammonia into the SCR units (A-1 through A-14) until the catalyst bed reaches the minimum operating temperature specified by the abatement device manufacturer (Basis: BACT for NO_x). - 13. The owner/operator shall ensure that the cumulative combined emissions from S-1 through S-14 Engines and S-15 do not exceed the following limits during any consecutive twelvemonth period, including emissions generated during engine startups and shutdowns: - 54.35 tons of NO_x (as NO₂) per rolling 12 month period; - 84.45 tons of CO per rolling 12 month period; - 76.11 tons of POC (as CH4) per rolling 12 month period; - 40.31 tons of Total Particulate Matter per rolling 12 month period; and - 40.31 tons of PM₁₀ per rolling 12 month period; and - 40.31 tons of PM_{2.5} per rolling 12 month period; and - 6.63 tons of SO₂ per rolling 12 month period. - (Basis: Offsets, Cumulative Increase) - 14. The owner/operator shall comply with requirements (a) through (e) below under all operating scenarios, except during engine startup and shutdown (although startup and shutdown emissions shall be included in determining compliance with the facility-wide daily Total Particulate Matter emissions limit as set forth in subsection (c)). - (a) The nitrogen oxide concentration at each point P-1 through P-14 shall not exceed 5 ppmv, on a dry basis, corrected to 15% O_2 , averaged over any 1-hour period. (Basis: BACT for NO_x) - (b) The carbon monoxide concentration at each point P-1 through P-14 shall not exceed 13 ppmv, on a dry basis, corrected to 15% O₂, averaged over any 1-hour period. (Basis: BACT for CO) - (c) Total Particulate Matter, PM₁₀ and PM_{2.5} emissions from any engine shall not exceed 1.3 lb/hr except as provided in Condition 16, and in any event shall not exceed 1.9 lb/hr. Total Particulate Matter, PM₁₀, and PM_{2.5} emissions from all fourteen engines shall not exceed 461.65 lb/day. (Basis: BACT, Cumulative Increase) - (d) The POC concentration at each point P-1 through P-14 with the corresponding engine operating at 75% or more of full load shall not exceed 25 ppmv on a dry basis, corrected to 15% O₂, averaged over any 1-hour period. (Basis: BACT for POC) - (e) Ammonia (NH₃) emission concentrations at each point P-1 through P-14 shall not exceed 10 ppmv, on a dry basis, corrected to 15% O₂, averaged over any 3-hour period. The owner/operator shall quantify, by continuous recording, the ammonia injection rate to A-1 through A-14 SCR Systems. The correlation between the engine heat input and the SCR System ammonia injection rates as determined in accordance with Condition 19 shall be used to calculate the corresponding ammonia emission concentration at emission points P-1 through P-14. The facility will notify the Engineering Division Permit Evaluation Manager in writing when any engine operates for 3 consecutive hours at an average calculated ammonia slip rate equal to or greater than 10 ppmvd corrected to 15% O₂ (in addition to any reporting required by District Regulation 1). The notification shall be provided to the District within one week of an engine operating at an average calculated slip rate equal to or greater than 10 ppmvd corrected to 15% O₂. If the parametric monitoring indicates a corresponding ammonia slip of 10 ppm corrected to 15% O₂ for 3 consecutive hours, then the District may require a District approved source test for ammonia slip to demonstrate ongoing compliance and to update the parametric monitoring correlation as necessary. (Basis: Regulation 2, Rule 5) - 15. The owner/operator shall demonstrate compliance with Conditions 13 and 14 by using properly operated and maintained continuous monitors during all hours of operation including equipment startup and shutdown periods for all of the following parameters: - (a) Firing Hours and Fuel Flow Rates for each source - (b) Carbon Dioxide (CO₂) or Oxygen (O₂) concentrations, Nitrogen Oxides (NO_x) concentrations, and Carbon Monoxide (CO) concentrations at emission points P-1 through P-14 - (c) Ammonia injection rate at A-1 through A-14 SCR Systems - (d) Corrected NO_x concentrations, NO_x mass emissions (as NO₂), corrected CO concentrations, and CO mass emissions at each emission point for every 1-hour period - (e) Total Heat Input Rate for every clock hour - (f) The cumulative total Heat Input (MMBTU) for each calendar day for each engine - (g) Calculate NO_x mass emissions (as NO₂) and CO mass emissions, for each calendar day for each engine, and for the previous consecutive twelve-month period using CEM data. - (h) Calculate the mass emissions of PM-10, POC, and SO₂ for each calendar day for each engine and for the previous twelve-month period using District approved emission factors. The owner/operator shall record all of the parameters identified in (a) through (c) above every fifteen (15) minutes (excluding normal calibration periods) and shall summarize all of the above parameters in accordance with the relevant permit limits. The owner/operator shall use the parameters measured pursuant to (a) through (c) above and District approved calculation methods to calculate the parameters identified in (d) through (h) above for each engine: (Basis: 1-520.1, 9-9-501, BACT (except for SO₂), Offsets, Cumulative Increase) - 16. The owner/operator shall demonstrate compliance with the 1.3 lb/hr Total Particulate Matter emissions limit in Condition 14(c) by performing tests for Total Particulate Matter emissions as required by these conditions. If Total Particulate Matter emissions for an engine generator set exceed 1.9 lb/hr, then that engine generator set shall be deemed to be in violation of Condition 14(c). If Total Particulate Matter emissions for any engine generator set exceed 1.3 lb/hr, but do not exceed 1.9 lb/hr, then that engine generator set shall not be considered to be in violation of Condition 14(c) if the owner/operator can demonstrate, subject to approval by the APCO, that the engine has been installed, operated, and maintained properly in accordance with all manufacturer's specifications and instructions. The owner/operator shall so demonstrate by: - (i) retesting emissions within 45 days after receiving the final test report from the initial test exceeding 1.3 lb/hr, unless the APCO determines that a retest for Total Particular Matter is not appropriate (in accordance with the source testing requirements set forth in Condition 20); - (ii) submitting to the APCO, within 30 days after receiving the final test report from the initial test exceeding 1.3 lb/hr, adequate documentation to verify that the engine has been installed, operated, and maintained properly in accordance with all manufacturers' specifications and instructions. Within 30 days of receipt of the results of the retest and the documentation required by subsections (i) and (ii) above, the APCO shall make a determination whether the engine has been installed, operated, and maintained in accordance with manufacturers' specifications and instructions. If the APCO determines that the engine has been properly installed, operated, and maintained, then the engine shall be deemed not to be in violation of the single-engine hourly emission limit in Condition 14(c) (although emission from the engine will still be counted for purposes of the facility-wide limit). If the APCO determines that the given engine has not been properly installed, operated, and maintained, then the engine shall be deemed to be in violation of Condition 14(c). Engines that operate pursuant to the provisions of this Condition 16 shall continue to be tested on a regular basis according to these Conditions. 17. Within 136 days of the beginning of the commissioning period for each engine at EEC, the Owner/operator shall conduct a District-approved initial source test for Total Particulate Matter, and POC on the corresponding emission point P-1 through P-14 with the corresponding - source engine operating at least 80% of full load to determine compliance with these Permit Conditions. The Owner/operator shall conduct a District-approved initial source test for SO₂ on one of the fourteen emission points with the corresponding source engine operating at least 80% of full load to determine compliance with these Permit Conditions. (Basis: 2-1-411). - 18. Prior to the end of the commissioning period, the Owner/operator shall conduct a District and CEC Compliance Program Manager (CPM) approved source test to establish emissions during startup and shutdown. The source test shall determine NO_x, CO, POC and PM₁₀ emissions during cold startup of the engines. The source test shall measure PM₁₀ emissions during a cold startup of no fewer than 3 engines; one 30 minute test run shall be conducted per
engine. The source test shall determine NO_x, CO, and POC emissions during shutdown of the engines. The POC emissions shall be analyzed for methane and ethane to account for the presence of unburned natural gas. Twenty (20) working days before the execution of the source tests, the Owner/operator shall submit to the District and the CEC CPM a detailed source test plan designed to satisfy the requirements of this Condition, including specification of the number of tests. The Owner/operator shall notify the District and the CEC CPM at least seven (7) working days prior to the planned source testing date. Source test results shall be submitted to the District within 60 days of the date that source testing is completed at the facility. - 19. The owner/operator shall conduct an initial District-approved source test to determine the SCR System ammonia injection rate and the corresponding NH₃ emission concentration at two of the fourteen emission points P-1 through P-14. The source test shall be conducted over the expected operating load range of the engines (including, but not limited to, 75% and 100% load) to establish the ammonia injection rates necessary to achieve NO_x emission limits while maintaining ammonia slip levels. A correlation between NO_x ppmv stack exit concentration, ammonia injection rate, heat input, and ammonia exit concentration shall be established for the two engines that were source tested. The test data shall be used as input for the calculation for the remaining engines. Ongoing compliance shall be demonstrated through calculations of corrected ammonia concentrations based upon the source test correlation and continuous records of ammonia injection rate. (Basis: Regulation 2, Rule 5). - 20. The owner/operator shall obtain approval for all source test procedures from the Technical Services Division prior to conducting any tests. The owner/operator shall comply with all applicable testing requirements for continuous emission monitors as approved by the Technical Services Division. Twenty (20) working days before the execution of source testing, the Owner/operator shall submit to the District and the CEC CPM a detailed source test plan designed to satisfy the requirements of any of these Conditions, including specification of the number of tests. The Owner/operator shall notify the District at least seven (7) working days prior to the planned source test date. Source test results shall be submitted to the District and the CEC CPM within 60 days of completing the tests. (Basis: BACT) - 21. The owner/operator shall conduct a District approved source test no later than 365 days after the initial Total Particulate Matter source test. The District approved source test shall determine the NH₃ emission concentration from two of the fourteen emission points to demonstrate ongoing compliance and to verify the parametric monitoring correlation. The District approved source test shall measure the Total Particulate Matter mass emission rate and POC emission concentration at emission points P-1 through P-14 with the corresponding source engine operating at least 80% of full load to determine compliance with these Permit Conditions. (Basis: Cumulative Increase, BACT) - 22. After completion of the initial source test and the first annual source test, the owner/operator shall conduct a District approved source test on each engine every 8,760 hours of operation or every 3 years whichever comes first. The District approved source test shall determine the NH₃ emission concentration from two of the fourteen emission points to demonstrate ongoing compliance and to verify the parametric monitoring correlation. The District approved source test shall measure the Total Particulate Matter mass emission rate and POC emission concentration at emission points P-1 through P-14 with the corresponding source engine operating at least 80% of full load to determine compliance with these Permit Conditions. (Basis: Cumulative Increase, BACT) - 23. The owner/operator shall not allow the maximum projected annual toxic air contaminant emissions from all emission points P-1 through P-14 combined to exceed the following limits: 1,3-Butadiene 872 pounds per year Formaldehyde 11,200 pounds per year unless the following requirement is satisfied: The owner/operator shall perform a health risk assessment to determine the total facility risk using the emission rates determined by source testing and the most current Bay Area Air Quality Management District approved procedures and unit risk factors in effect at the time of the analysis. The owner/operator shall submit the risk analysis to the District and the CEC CPM within 60 days of the source test date. The owner/operator may request that the District and the CEC CPM revise the carcinogenic compound emission limits specified above. If the owner/operator demonstrates to the satisfaction of the APCO that these revised emission limits will not result in a significant cancer risk, the District and the CEC CPM may administratively adjust the carcinogenic compound emission limits listed above. (Basis: Regulation 2, Rule 5) 24. Within 136 days of start-up of the facility, the owner/operator shall conduct an initial District-approved source test on one of the fourteen emission points P-1 through P-14 with the corresponding engine operating at least 80% of full load to demonstrate compliance with Condition 23 and to demonstrate that the facility complies with Regulation 2, Rule 5. The initial District approved source test for toxic air contaminants shall quantify the emission rates from one engine of the following compounds: 1,3 Butadiene, Formaldehyde, Acetaldehyde, Benzene, Toluene, Xylene, and Polycyclic Aromatic Hydrocarbons. The toxic air contaminant source test results will be converted into emission factors in units of lb/MMBtu, and the annual firing rates for each of the fourteen engines will be used to calculate annual emissions of toxic air contaminants from the facility. The owner/operator shall use the results of the initial source test for toxic air contaminants to perform a health risk assessment to determine the total facility risk using District approved procedures and unit risk factors. (Basis: Regulation 2, Rule 5) 25. The owner/operator shall conduct an additional District approved source test within 3 years of the initial test on one of the fourteen emission points P-1 through P-14 with the corresponding engine operating at least 80% of full load to demonstrate compliance with Condition 23. The toxic air contaminant source test results will be converted into emission factors in units of lb/MMBtu, and the annual firing rates for each of the fourteen engines will be used to calculate annual emissions of toxic air contaminants from the facility. (Basis: Regulation 2, Rule 5) #### **Conditions for S-15 Emergency Standby Generator at all times** - 26. Operation of S-15 for reliability-related activities is limited to 50 hours per year. (Basis: Stationary Diesel Engine ATCM, 17 C.C.R. § 93115(e)(2)(A)(3).) - 27. The owner/operator shall operate engine S-15 only for the following purposes: to mitigate emergency conditions, for emission testing to demonstrate compliance with a District, state or Federal emission limit, or for reliability-related activities (maintenance and other testing, but excluding emission testing). Operating hours while mitigating emergency conditions or while emission testing to show compliance with District, state or Federal emission limits is not limited. (Basis: Stationary Diesel Engine ATCM, 17 C.C.R. § 93115(e)(2)(A)(3).) - 28. The owner/operator shall operate engine S-15 only when a non-resettable totalizing meter (with a minimum display capability of 9,999 hours) that measures the hours of operation for the engine is installed, operated and properly maintained. (Basis: Stationary Diesel Engine ATCM, 17 C.C.R. § (e)(4)(G)(1).) - 29. Records: The owner/operator shall maintain the following monthly records in a District-approved log for at least 36 months from the date of entry. Log entries shall be retained on-site, either at a central location or at the engine's location, and made immediately available to the District staff upon request. - a. Hours of operation of S-15 for reliability-related activities (maintenance and testing). - b. Hours of operation of S-15 for emission testing to show compliance with emission limits. - c. Hours of emergency operation of S-15. - d. For each emergency, the nature of the emergency condition. - e. Fuel usage for S-15. (Basis: Stationary Diesel Engine ATCM, 17 C.C.R. § 93115(e)(4)(I).) - 30. At School and Near-School Operation: If S-15 is located on school grounds or within 500 feet of any school grounds, the owner/operator shall not operate it for non-emergency use, including maintenance and testing, during the following periods: - a. Whenever a school-sponsored activity is taking place at the school (if the engine is located on school grounds). - b. Between 7:30 a.m. and 3:30 p.m. on days when school is in session. - "School" or "School Grounds" means any public or private school used for the purposes of the education of more than 12 children in kindergarten or any of grades 1 to 12, inclusive, but does not include any private school in which education is primarily conducted in a private home(s). "School" or "School Grounds" includes any building or structure, playground, athletic field, or other areas of school property but does not include unimproved school property. (Basis: Stationary Diesel Engine ATCM, 17 C.C.R. § 93115(e)(2)(A)(1).) #### VI Recommendation The APCO has concluded that the proposed Eastshore Energy Center power plant, which is composed of the proposed sources listed below, will comply with all applicable District rules and regulations. The following sources will be subject to the permit conditions and BACT and offset requirements discussed previously. - S-1 Natural Gas Fired Turbocharged Engine
Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-1 Selective Catalytic Reduction System and A-15 Oxidation Catalyst - S-2 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-2 Selective Catalytic Reduction System and A-16 Oxidation Catalyst - S-3 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-3 Selective Catalytic Reduction System and A-17 Oxidation Catalyst - S-4 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-4 Selective Catalytic Reduction System and A-18 Oxidation Catalyst - S-5 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-5 Selective Catalytic Reduction System and A-19 Oxidation Catalyst - S-6 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-6 Selective Catalytic Reduction System and A-20 Oxidation Catalyst - S-7 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-7 Selective Catalytic Reduction System and A-21 Oxidation Catalyst - S-8 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-8 Selective Catalytic Reduction System and A-22 Oxidation Catalyst - S-9 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-9 Selective Catalytic Reduction System and A-23 Oxidation Catalyst - S-10 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-10 Selective Catalytic Reduction System and A-24 Oxidation Catalyst - S-11 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-11 Selective Catalytic Reduction System and A-25 Oxidation Catalyst - S-12 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-12 Selective Catalytic Reduction System and A-26 Oxidation Catalyst - S-13 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-13 Selective Catalytic Reduction System and A-27 Oxidation Catalyst - S-14 Natural Gas Fired Turbocharged Engine Generator Set, 8.4 MW (gross), 11,660 HP, Wartsila Model 20V34SG, abated by A-14 Selective Catalytic Reduction System and A-28 Oxidation Catalyst - S-15 Emergency Standby Generator Set; Diesel Engine; Caterpillar Model C9ATAAC, 369 HP The proposed facility will also include the following exempt equipment: Natural Gas Fired Heaters to Heat Incoming Natural Gas Feed to each Engine Generator Set, Max Firing Rate 2.0 MMBtu/hr. The natural gas fired heaters are exempt from District permit requirements per Regulation 2, Rule 1, Section 114. Pursuant to District Regulation 2-3-404, this document has satisfied the public notice, public comment, and public inspection requirements of Regulation 2-3-404, 2-2-406 and 2-2-407. Accordingly, a notice inviting written public comment was published on April 28, 2007 in the Oakland Tribune, a newspaper of general circulation in the area of the proposed Eastshore Energy Center Project. The public inspection and comment period ended on June 2, 2007. All written comments received were responded to in writing. Jack P. Broadbent Executive Officer/Air Pollution Control Officer Bay Area Air Quality Management District 939 Ellis Street San Francisco CA 94109 #### VII Glossary | 1 | |---| | British Thermal Unit | | Application for Certification | | Bay Area Air Quality Management District | | Best Available Control Technology | | California Air Resources Board | | California Energy Commission | | California Energy Commission, Compliance Program Manger | | Carbon Monoxide | | Executive Officer/Air Pollution Control Officer | | Ammonia | | Non-methane Hydrocarbons | | Nitrogen Oxides | | Oxygen | | Preliminary Determination of Compliance | | Particulate Matter with an aerodynamic diameter of 10 | | Microns or less | | Particulate Matter with an aerodynamic diameter of 2.5 | | Microns or less | | Precursor Organic Compounds | | Parts Per Million by Volume, Dry | | Prevention of Significant Deterioration | | Public Utilities Commission | | South Coast Air Quality Management District | | Selective Catalytic Reduction | | San Joaquin Valley Air Pollution Control District | | Sulfur Dioxide | | Toxic Air Contaminant | | Toxics Best Available Control Technology | | Volatile Organic Compounds | | | # APPENDIX A Emission Calculations | Emissio | n Factors for S-1 through S-14 | | | | | | | | | |----------|---|---------|----------|--|--|--|--|--|--| | Pollutar | Pollutant Source Value | | | | | | | | | | NOx | Applicant Proposed Permit Limit of 5 ppm | 0.01842 | lb/MMBtu | | | | | | | | CO | Applicant Proposed Permit Limit of 13 ppm | 0.02915 | lb/MMBtu | | | | | | | | POC | Applicant Proposed Permit Limit of 25 ppm (annual average) | 0.03203 | lb/MMBtu | | | | | | | | PM10 | Average Emission Rate for Normal Operations | 1.3 | lb/hr | | | | | | | | PM10 | Maximum Emission Rate for Normal Operations | 1.9 | lb/hr | | | | | | | | | Total Sulfur in Natural Gas 0.0367 lb/hr, Lube Oil Combustion 0.2 | | | | | | | | | | SO2 | lb/hr | 0.2367 | lb/hr | | | | | | | #### **Emission Factor Derivation** NOx lb/MMBtu = ppm x 1/molar volume x MW x Fd x 20.9/(20.9 - %O2) ppm = 5 ppm @15%O2 limit proposed by Applicant molar volume = 386.8 dscf/lbmol @ 14.696 psia, 70 deg. F MW = molecular weight, lb/lb-mol Fd = 8743 dscf/MMBtu for 1050 Btu/scf Natural Gas @ 70 deg F $NOx\ lb/MMBtu = 5\ E-06\ ft3\ of\ NOx/ft3\ stack\ gas\ x\ 1/386.8\ dscf/lb-mol\ x\ 46\ lb/lb-mol\ x\ 8743\ dscf/MMBtu\ x\ 20.9/(20.9\ -\ 15)\ NOx\ lb/MMBtu = 0.01842$ CO lb/MMBtu = ppm x 1/molar volume x MW x Fd x 20.9/(20.9 - %O2) ppm = 13 ppm @ 15% O2 limit proposed by Applicant molar volume = 386.8 dscf/lbmol @ 14.7 psia, 70 deg. F MW = molecular weight, lb/lb-mol Fd = 8743 dscf/MMBtu for 1050 Btu/scf Natural Gas @ 70 deg F $CO \ lb/MMBtu = 13 \ E-06 \ ft3 \ of \ CO/ft3 \ stack \ gas \ x \ 1/386.8 \ dscf/lb-mol \ x \ 28 \ lb/lb-mol \ x \ 8743 \ dscf/MMBtu \ x \ 20.9/(20.9 - 15) \\ CO \ lb/MMBtu = 0.02915$ POC lb/MMBtu = ppm x 1/molar volume x MW x Fd x 20.9/(20.9 - %O2) ppm = 25 ppm @ 15% O2 (annual average) limit proposed by Applicant molar volume = 386.8 dscf/lbmol @ 14.7 psia, 70 deg. F MW = molecular weight, lb/lb-mol Fd = 8743 dscf/MMBtu for Natural Gas $POC\ lb/MMBtu = 25\ E-06\ ft3\ of\ POC/ft3\ stack\ gas\ x\ 1/386.8\ dscf/lb-mol\ x\ 16\ lb/lb-mol\ x\ 8743\ dscf/MMBtu\ x\ 20.9/(20.9\ -\ 15)$ $POC\ lb/MMBtu = 0.03203$ SOx lb/hr (as SO2) Natural Gas 0.182 grains of S/100 scf **Natural Gas Combustion Portion** $SO2 = (0.182 \text{ gr}/100 \text{ scf})(1b/7000 \text{ gr})(1/1020 \text{ BTU/scf})(1 \text{ x } 10E6 \text{ Btu/MMBtu})(64 \text{ lb } SO2/32 \text{ lb } S) = 0.0005098 \text{ lb/MMBtu})(1/1020 \text{ BTU/scf})(1/1020 B$ SO2 = (0.0005098 lb/MMBtu)(72.08 MMBtu/hr) = 0.0367 lb/hr Lube Oil Portion SO2 = 0.2 lb/hr | | - · | | | | | | | | |--|------------|------------|------------|--------------|--------------|---------------|--------------|------------| | Engine Firing | • | | | | | | | | | Annual | | | • | a (8439 kW | | BTU/kW) | | | | Short Term | | MMBTU/hr | Design dat | a + 1% ma | rgin | | | | | | Cold | | | | | | | | | | Catalyst | | | | | | | | | | Start | | | | | | | | | Pollutant | (kg/event) | (lb/event) | | | | | | | | NOx | 4 | 8.818 | Manufactu | rer Estimate | e - 30 minu | tes operation | on after 6 h | r downtime | | CO | 6 | 13.228 | Manufactu | rer Estimate | e - 30 minu | tes operation | on after 6 h | r downtime | | POC | 3 | 6.614 | Manufactu | rer Estimate | e - 30 minu | tes operation | on after 6 h | r downtime | | PM10 | 1.1 | 2.425 | Manufactu | rer Estimate | e - 30 minu | tes operation | on after 6 h | r downtime | | SO2 0.1184Based on 30 minutes at full load | | | | | | | | | | | Warm | | | | | | | | | | Catalyst | | | | | | | | | | Start | | | | | | | | | Pollutant | (kg/event) | (lb/event) | | | | | | | | NOx | 1.1 | 2.425 | Manufactu | rer Estimate | e - 15 minu | tes operation | on | | | CO | 1 | 2.205 | Manufactu | rer Estimate | e - 15 minu | tes operation | on | | | POC | 0.8 | 1.764 | Manufactu | rer Estimate | e - 15 minu | tes operation | on | | | PM10 | 0.9 | 1.984 | Manufactu | rer Estimate | e - 15 minu | tes operation | on | | | SO2 | | 0.0592 | Based on ' | 15 minutes | at full load | | | | | | Normal | Shutdown | | | | | | | | Pollutant | (lb/hr) | (lb/event) | | | | | | | | NOx | 1.328 | 0.188 | Based on 8 | 3.5 minutes | at full load | | | | | CO | 2.1 | 0.298 | Based on 8 | 3.5 minutes | at full load | | | | | POC | 2.3 | 0.326 | Based on 8 | 3.5 minutes | at full load | | | | | PM10 | 1.9 | 0.269 | Based on 8 | 3.5 minutes | at full load | | | | | SO2 | 0.2367 | 0.0335 | Based on 8 | 3.5 minutes | at full load | | | | PM10 at 1.9 lb/hr is the maximum allowed by permit during normal operation. #### TOTAL CRITERIA POLLUTANT EMISSONS FROM THE FACILITY – AIR TOXICS EMISSIONS NOT INCLUDED | Pollutant | One Engine
Normal
Operation
Emissions
(ton/yr) | One Engine
Startup/Shutdown
Emissions
(ton/yr) | One Engine
Total
Emissions
(ton/yr) | |-----------|--|---|--| | NOx | 2.528 | 1.351 | 3.879 | | СО | 4.000 | 2.029 | 6.029 | | POC | 4.395 | 1.041 | 5.436 | | PM10 | 2.475 | 0.404 | 2.879 | | SOx | 0.451 | 0.023 | 0.473 | | Pollutant | 14
Engines
Normal
Operation
Emissions
(ton/yr) | 14 Engines
Startup/Shutdown
Emissions
(ton/yr) | 14 Engines
Total
Emissions
(ton/yr) | Emergency
Standby
Generator
Emissions
(ton/yr) | Total
Project
Emissions
(ton/yr) | Offset
Ratio | Offset
(ton/yr) | |-----------|--|---|--|--|---|-----------------|--------------------| | NOx | 35.387 | 18.913 | 54.299 | 0.053 | 54.353 | 1.15 | 62.506 | | CO | 56.000 | 28.405 | 84.405 | 0.047 | 84.452 | NA | | | POC | 61.533 | 14.574 | 76.107 | 0.0028 | 76.110 | 1.15 | 87.527 | | PM10 | 34.648 | 5.657 | 40.306 | 0.0023 | 40.308 | NA | | | SOx | 6.309 | 0.319 | 6.628 | 0.00011 | 6.628 | NA | | #### ANNUAL CRITERIA POLLUTANT EMISSIONS FROM NORMAL OPERATIONS – NO STARTUP/SHUTDOWN EMISSIONS | Pollutant | Value | Unit | One Engine
Maximum
Firing Rate
(MMBtu/hr) | One Engine
Normal Operation
Emissions
(lb/hr) | One Engine
Normal Operation
Emissions
(lb/day) | Maximum
Operation
(hr/yr) | One Engine
Normal Operation
Emissions
(lb/yr) | One Engine
Normal Operation
Emissions
(ton/yr) | |-----------|---------|----------|--|--|---|---------------------------------|--|---| | NOx | 0.01842 | lb/MMBtu | 72.08 | 1.328 | 31.87 | 3807.5 | 5055.27 | 2.528 | | CO | 0.02915 | lb/MMBtu | 72.08 | 2.101 | 50.43 | 3807.5 | 8000.06 | 4.000 | | POC | 0.03203 | lb/MMBtu | 72.08 | 2.309 | 55.41 | 3807.5 | 8790.46 | 4.395 | | PM10 | 1.3 | lb/hr | | 1.3 | 31.20 | 3807.5 | 4949.75 | 2.475 | | SOx | 0.2367 | lb/hr | | 0.2367 | 5.68 | 3807.5 | 901.24 | 0.451 | Commissioning Period Emissions and Startup/Shutdown Emissions Not Included Operation Hours = 4000 hours - 192.5 hours for Startup/Shutdown = 3807.5 hours | Pollutant | Value | Unit | One Engine
Maximum
Firing Rate
(MMBtu/hr) | One Engine
Normal Operation
Emissions
(lb/hr) | 14 Engines
Normal Operation
Emissions
(lb/day) | Maximum
Operation
(hr/yr) | 14 Engines
Normal Operation
Emissions
(lb/yr) | 14 Engines
Normal Operation
Emissions
(ton/yr) | |-----------|---------|----------|--|--|---|---------------------------------|--|---| | NOx | 0.01842 | lb/MMBtu | 72.08 | 1.328 | 446.11 | 3807.5 | 70773.77 | 35.387 | | СО | 0.02915 | lb/MMBtu | 72.08 | 2.101 | 705.98 | 3807.5 | 112000.84 | 56.000 | | POC | 0.03203 | lb/MMBtu | 72.08 | 2.309 | 775.73 | 3807.5 | 123066.45 | 61.533 | | PM10 | 1.3 | lb/hr | | 1.3 | 436.80 | 3807.5 | 69296.50 | 34.648 | | SOx | 0.2367 | lb/hr | | 0.2367 | 79.53 | 3807.5 | 12617.29 | 6.309 | Commissioning Period Emissions and Startup/Shutdown Emissions Not Included Operation Hours = 4000 hours - 192.5 hours for Startup/Shutdown = 3807.5 hours #### STARTUP/SHUTDOWN CRITERIA POLLUTANT EMISSIONS | Pollutant | Cold
Catalyst
Start
(lb/event) | | Shutdown
(lb/event) | One Engine
Maximum
Cold
Startups
(event) | One Engine
Maximum
Cold
Shutdowns
(event) | One Engine
Startup
Emissions
(lb/yr) | One Engine
Shutdown
Emissions
(lb/yr) | One Engine
Startup/Shutdown
Emissions
(lb/yr) | One Engine
Startup/Shutdown
Emissions
(ton/yr) | |-----------|---|--------|------------------------|--|---|---|--|--|---| | NOx | 8.818 | 2.425 | 0.188 | 300 | 300 | 2645.40 | 56.40 | 2701.80 | 1.351 | | СО | 13.228 | 2.205 | 0.298 | 300 | 300 | 3968.40 | 89.40 | 4057.80 | 2.029 | | POC | 6.614 | 1.764 | 0.326 | 300 | 300 | 1984.20 | 97.80 | 2082.00 | 1.041 | | PM10 | 2.425 | 1.984 | 0.269 | 300 | 300 | 727.50 | 80.70 | 808.20 | 0.404 | | SOx | 0.1184 | 0.0592 | 0.0335 | 300 | 300 | 35.52 | 10.05 | 45.57 | 0.023 | #### Notes: SOx emissions estimates are based on a maximum hourly emission rate of 0.2367 lb/hr. SOx emissions will remain at a simular level during startup and shutdown. Worst case assumption 300 coldstarts per year for each engine. One Cold Start/Shutdown Cycle (30 min startup, 8.5 min shutdown) and One Warm Start/Shutdown Cycle (15 min for startup, 8.5 min for shutdown) | | Cold
Catalyst
Start
(lb/event) | | Shutdown
(lb/event) | 14 Engines
Maximum
Cold
Startups
(event) | 14 Engines
Maximum
Cold
Shutdowns
(event) | 14 Engines
Startup
Emissions
(lb/yr) | 14 Engines
Shutdown
Emissions
(lb/yr) | 14 Engines
Startup/Shutdown
Emissions
(lb/yr) | 14 Engines
Startup/Shutdown
Emissions
(ton/yr) | |------|---|--------|------------------------|--|---|---|--|--|---| | NOx | 8.818 | 2.425 | 0.188 | 4200 | 4200 | 37035.60 | 789.60 | 37825.20 | 18.913 | | СО | 13.228 | 2.205 | 0.298 | 4200 | 4200 | 55557.60 | 1251.60 | 56809.20 | 28.405 | | POC | 6.614 | 1.764 | 0.326 | 4200 | 4200 | 27778.80 | 1369.20 | 29148.00 | 14.574 | | PM10 | 2.425 | 1.984 | 0.269 | 4200 | 4200 | 10185.00 | 1129.80 | 11314.80 | 5.657 | | SOx | 0.1184 | 0.0592 | 0.0335 | 4200 | 4200 | 497.28 | 140.70 | 637.98 | 0.319 | #### Notes: SOx emissions estimates are based on a maximum hourly emission rate of 0.2367 lb/hr. SOx emissions will remain at a simular level during startup and shutdown. Worst case assumption 300 coldstarts per year for each engine. One Cold Start/Shutdown Cycle (30 min startup, 8.5 min shutdown) and One Warm Start/Shutdown Cycle (15 min for startup, 8.5 min for shutdown) #### MAXIMUM HOURLY EMISSIONS FOR NATURAL GAS FIRED ENGINE GENERATOR SETS #### Max Hourly Emissions - One Cold Start (30 minutes for startup) | Pollutant | Normal
Operation
(lb/hr) | Normal
Operation
(hour/day) | Cold
Startup
(lb/event) | Startup
(event) | | Number
Shutdown
(event) | One
Engine
Total
(lb/hr) | 14
Engines
Total
(lb/hr) | |-----------|--------------------------------|-----------------------------------|-------------------------------|--------------------|--------|-------------------------------|-----------------------------------|-----------------------------------| | NOx | 1.328 | 0.5 | 8.818 | 1 | 0.188 | 0 | 9.48 | 132.75 | | CO | 2.101 | 0.5 | 13.228 | 1 | 0.298 | 0 | 14.28 | 199.90 | | POC | 2.309 | 0.5 | 6.614 | 1 | 0.327 | 0 | 7.77 | 108.76 | | PM10 | 1.900 | 0.5 | 2.425 | 1 | 0.269 | 0 | 3.38 | 47.25 | | SO2 | 0.2367 | | 0.1184 | | 0.0335 | | 0.2367 | 3.31 | PM10 at Maximum lb/hr allowed by Permit. Facility must comply with more stringent daily PM10 cap. #### MAXIMUM DAILY EMISSIONS FOR NATURAL GAS FIRED ENGINE GENERATOR SETS Max Daily Emissions For One Engine - One Cold Start (30 min startup) | Pollutant | Normal Operation
(lb/hr) | Normal Operation
(hour/day) | Cold
Startup
(lb/event) | • | Warm
Startup
(lb/event) | Warm
Startup
(event) | Shutdown
(lb/event) | Number
Shutdown
(event) | Total
(lb/day) | |-----------|-----------------------------|--------------------------------|-------------------------------|---|-------------------------------|----------------------------|------------------------|-------------------------------|-------------------| | NOx | 1.328 | 23.50 | 8.818 | 1 | 2.425 | C | 0.188 | 0 | 40.03 | | CO | 2.101 | 23.50 | 13.228 | 1 | 2.205 | O | 0.298 | 0 | 62.60 | | POC | 2.309 | 23.50 | 6.614 | 1 | 1.764 | C | 0.326 | 0 | 60.88 | | PM10 | 1.900 | 23.50 | 2.425 | 1 | 1.984 | C | 0.269 | 0 | 47.08 | | SO2 | 0.2367 | 24 | 0.118 | | 0.059 | | 0.034 | | 5.68 | Max Daily Emissions For All 14 Engines - One Cold Start (30 min startup) | | | | Cold | Cold | Warm | Warm | | Number | One Engine | 14 Engines | |-----------|-----------|------------|------------|---------|------------|---------|------------|----------|------------|------------| | | Normal | Normal | | | | | | | | | | | Operation | Operation | Startup | Startup | Startup | Startup | Shutdown | Shutdown | Total | Total | | Pollutant | (lb/hr) | (hour/day) | (lb/event) | (event) | (lb/event) | (event) | (lb/event) | (event) | (lb/day) | (lb/day) | | NOx | 1.328 | 23.50 | 8.818 | 1 | 2.425 | 0 | 0.188 | 0 | 40.03 | 560.364 | | CO | 2.101 | 23.50 | 13.228 | 1 | 2.205 | 0 | 0.298 | 0 | 62.60 | 876.421 | | POC | 2.309 | 23.50 | 6.614 | 1 | 1.764 | 0 | 0.326 | 0 | 60.88 | 852.257 | | PM10 | 1.300 | 23.50 | 2.425 | 1 | 1.984 | 0 | 0.269 | 0 | 32.98 | 461.650 | | SO2 | 0.2367 | 24 | 0.118 | | 0.059 | | 0.034 | | 5.68 | 79.531 | PM10 Maximum Daily based on 1.3 lb/hr for all 14 engines + 1 cold start ### **Diesel Engine Emissons (S-15)** BAAQMD Final, 3/23/07 Rated Horsepower: 369 Nameplate | | g/kw-hr | (g/hp-hr) | |------------------|---------|-----------| | NOx | 3.5150 | 2.6211 | | CO | 3.1000 | 2.3117 | | POC
| 0.1850 | 0.1380 | | PM ₁₀ | 0.1500 | 0.1119 | | SO_2 | 0.0074 | 0.0055 | g/kw-hr NOx & POC 3.7 95% NOx 5% POC | Pollutants | Factors | hp | Hours | lb/g | lbs/yr | | TPY | |-------------|--------------------------------|-----------|--------------|--------------------|-----------------|---|-----------| | NOx = | = (2.6211 g/hp-hr)* | (369 hp)* | (50 hrs/yr)* | (0.00220 lbs/g) = | = 106.61 lbs/yr | = | 0.053 TPY | | CO = | = (2.3117 g/hp-hr)* | (369 hp)* | (50 hrs/yr)* | (0.00220 lbs/g) = | 94.03 lbs/yr | = | 0.047 TPY | | POC = | $= (0.1380 \text{ g/hp-hr})^*$ | (369 hp)* | (50 hrs/yr)* | (0.00220 lbs/g) = | 5.61 lbs/yr | = | 0.003 TPY | | $PM_{10} =$ | $= (0.1119 \text{ g/hp-hr})^*$ | (369 hp)* | (50 hrs/yr)* | (0.00220 lbs/g) = | 4.55 lbs/yr | = | 0.002 TPY | | $SO_2 =$ | $= (0.0055 \text{ g/hp-hr})^*$ | (369 hp)* | (50 hrs/yr)* | (0.00220 lbs/g) = | 0.22 lbs/yr | = | 0.000 TPY | | | | | | | | | | | Pollutants | Factors | hp | hr/day | lb/g | lbs/day | |-------------|-------------------|-----------|--------------|-------------------|------------------| | NOx = | (2.6211 g/hp-hr)* | (369 hp)* | (24 hr/day)* | (0.00220 lbs/g)= | = 51.175 lbs/day | | CO = | (2.3117 g/hp-hr)* | (369 hp)* | (24 hr/day)* | (0.00220 lbs/g): | =45.133 lbs/day | | POC = | (0.1380 g/hp-hr)* | (369 hp)* | (24 hr/day)* | (0.00220 lbs/g) = | = 2.693 lbs/day | | $PM_{10} =$ | (0.1119 g/hp-hr)* | (369 hp)* | (24 hr/day)* | (0.00220 lbs/g)= | = 2.184 lbs/day | | $SO_2 =$ | (0.0055 g/hp-hr)* | (369 hp)* | (24 hr/day)* | (0.00220 lbs/g) | = 0.107 lbs/day | #### **Grain Loading Calculation for a Single Engine** PM-10 Maximum Emission Rate 1.9 lb/hr Firing Rate 72.8 MMBtu/hr F-factor 8743 dscf/MMBtu lb = 7000 grains Regulation 6 O2 Concentration 6% Ambient Air O2 Concentration 20.9% grains/dscf = (1.9 lb/hr x 7000 grains/lb)/(72.8 MMBtu/hr x (8743 dscf/MMBtu x 20.9/(20.9 - 6)) grains/dscf = 0.015 PM10 at Maximum lb/hr allowed by permit. #### **COMMISSIONING EMISSION FACTORS (PER ENGINE)** **Fuel Consumption Assumptions:** | kW load | kW (full load) | kW | kJ/kWh | kJ/Btu | Btu/kWh | MMBtu/hr | Btu load | |---------|----------------|------|--------|--------|---------|----------|----------| | 100% | 8439 | 8439 | 9010 | 1.055 | 8541 | 72.08 | 100% | | 90% | 8439 | 7595 | 9101 | 1.055 | 8627 | 65.52 | 90.9% | | 75% | 8439 | 6329 | 9330 | 1.055 | 8844 | 55.97 | 77.6% | | 50% | 8439 | 4198 | 10114 | 1.055 | 9587 | 40.25 | 55.8% | Note: kJ/kWh at various loads provided by vendor. **Emission Factor Assumptions:** | molar volume = | 386.8 | dscf/lbmol @ 14.696 psia, 70 deg. F | |-------------------------|-------|--| | Fd = | 8743 | dscf/MMBtu for 1050 Btu/scf Natural Gas @ 70 deg F | | MW (molecular weight) = | | lb NOx/lb-mol | | MW (molecular weight) = | | lb CO/lb-mol | | MW (molecular weight) = | | lb POC/lb-mol | | Reference Oxygen | 15 | % | | Ambient Oxygen | 20.9 | % | Commissioning | | | | | 001111 | moording | | | | |-----------|----------------------------|-------------------|-------|---------|-----------------|---------------------------|-------|---------| | | 100% Load
Emission Rate | 90% L
Emissior | | | Load
on Rate | 50% Load
Emission Rate | | | | Pollutant | (ppm) | (lb/hr) | (ppm) | (lb/hr) | (ppm) | (lb/hr) | (ppm) | (lb/hr) | | NOx | 120 | 31.86 | 120 | 28.96 | 110 | 22.68 | 100 | 14.82 | | CO | 260 | 42.02 | 260 | 38.19 | 300 | 37.64 | 400 | 36.10 | | POC | 110 | 10.16 | 110 | 9.23 | 140 | 10.04 | 170 | 8.77 | | *PM10 | | 1.9 | | 1.9 | | 1.9 | | 1.9 | | *SOx | | 0.237 | | 0.237 | | 0.237 | | 0.237 | Note: ppm at various loads provided by vendor. No change assumed for PM10 and SOx emissions. PM10 based on vendor guarantee. SOx based on 0.182 g S/100 scf + 0.2 lb/hr from lube oil. #### Worst Case Maximum Daily Emissions for Commissioning Period for Natural Gas Fired Engine Generator Sets | | Commissioning | | | | | | | | | | | | |-----------|---------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------|--|--|--|--|--|--| | Pollutant | # Engines | Per Engine
(lb/hr) | All Engine
(lb/hr) | Operation
(hr/day) | Per Engine
(lb/day) | Total
(lb/day) | | | | | | | | NOx | 4 | 31.86 | 127.43 | 24 | 764.60 | 3,058.39 | | | | | | | | СО | 4 | 42.02 | 168.06 | 24 | 1,008.38 | 4,033.53 | | | | | | | | POC | 4 | 10.16 | 40.63 | 24 | 243.78 | 975.14 | | | | | | | | *PM10 | 4 | 1.90 | 7.60 | 24 | 45.60 | 182.40 | | | | | | | | *SOx | 4 | 0.237 | 0.95 | 24 | 5.69 | 22.75 | | | | | | | For NOx, CO, and POC worst case commissioning emissions occur with 4 engines operating uncontrolled at 100% load. For PM10 and SOx worst case commissioning are the same as post commissioning emissions with 14 engines operating at 100% load. Commissioning Period Max Daily Emissions For One Engine (Engine With Controls) - One Cold Start (30 min startup) | | | | Cold | Cold | Warm | Warm | , | Number | | |-----------|------------------|------------------|------------|---------|------------|---------|------------|----------|----------| | | Normal Operation | Normal Operation | Startup | Startup | Startup | Startup | Shutdown | Shutdown | Total | | Pollutant | (lb/hr) | (hour/day) | (lb/event) | (event) | (lb/event) | (event) | (lb/event) | (event) | (lb/day) | | NOx | 1.33 | 23.5 | 8.82 | 1 | 2.43 | 0 | 0.188 | 0 | 40.02 | | СО | 2.10 | 23.5 | 13.23 | 1 | 2.20 | 0 | 0.298 | 0 | 62.60 | | POC | 2.31 | 23.5 | 6.61 | 1 | 1.76 | 0 | 0.327 | 0 | 60.87 | | PM10 | 1.90 | 23.5 | 2.43 | 1 | 1.98 | 0 | 0.312 | 0 | 54.13 | | SO2 | 0.24 | 24 | 0.12 | | 0.0592 | | 0.0335 | | 5.68 | #### Commissioning Period Max Daily Emissions For 14 Engines (Engines With Controls) - One Cold Start (30 min startup) | One Engine | 14 Engines | |------------|---| | Total | Total | | (lb/day) | (lb/day) | | 40.02 | 560.27 | | 62.60 | 876.46 | | 60.87 | 852.16 | | 54.13 | 757.75 | | 5.68 | 79.53 | | | Total
(lb/day)
40.02
62.60
60.87
54.13 | Eastshore Energy Center, Application No. 15195 BAAQMD Final, 10/07 FDOC Appendix A #### TOXIC AIR CONTAMINANT EMISSION ESTIMATE FOR FACILITY | Toxic Air Contaminant | Uncontrolled
Emission
Factor
(lb/MMBtu) | Max Firing Rate
14 Engines
(MMBtu/hr) | Max Firing Rate
14 Engines
(MMBtu/yr) | Abatement
Efficiency
Oxidation
Catalyst
(%) | Total
Project
Emissions
(lb/hr) | Acute
Risk Screening
Trigger Level
(lb/hr) | Total
Project
Emissions
(lb/yr) | Chronic
Risk Screening
Trigger Level
(lb/yr) | |----------------------------|--|---|---|---|--|---|--|---| | 1,3-Butadiene | 3.60E-04 | 1019.2 | 4036480 | 40 | 2.20E-01 | None | 8.72E+02 | 1.10E+00 | | Acetaldehyde | 5.19E-04 | 1019.2 | 4036480 | 40 | 3.17E-01 | None | 1.26E+03 | 6.40E+01 | | Acrolein | 5.78E-05 | 1019.2 | 4036480 | 40 | 3.53E-02 | 4.20E-04 | 1.40E+02 | 2.30E+00 | | Ammonia | 1.36E-02 | 1019.2 | 4036480 | 0 | 1.39E+01 | 7.10E+00 | 5.49E+04 | 7.70E+03 | | Benzene | 2.14E-04 | 1019.2 | 4036480 | 40 | 1.31E-01 | 2.90E+00 | 5.18E+02 | 6.40E+00 | | Benzo-a-anthracene | 5.76E-08 | 1019.2 | 4036480 | 40 | 3.52E-05 | None | 1.40E-01 | None | | Benzo-a-pyrene | 2.65E-09 | 1019.2 | 4036480 | 40 | 1.62E-06 | None | 6.42E-03 | 1.10E-02 | | Benzo-b-fluoranthene | 4.01E-08 | 1019.2 | 4036480 | 40 | 2.45E-05 | None | 9.71E-02 | None | | Benzo-k-fluoranthene | 7.68E-09 | 1019.2 | 4036480 | 40 | 4.70E-06 | None | 1.86E-02 | None | | Chrysene | 1.40E-08 | 1019.2 | 4036480 | 40 | 8.56E-06 | None | 3.39E-02 | None | | Dibenz-ah-anthracene | 2.65E-09 | 1019.2 | 4036480 | 40 | 1.62E-06 | None | 6.42E-03 | None | | Ethylbenzene | 6.97E-05 | 1019.2 | 4036480 | 40 | 4.26E-02 | None | 1.69E+02 | 7.70E+04 | | Formaldehyde | 4.62E-03 | 1019.2 | 4036480 | 40 | 2.83E+00 | 2.10E-01 | 1.12E+04 | 3.00E+01 | | Indeno-123cd-pyrene | 7.03E-09 | 1019.2 | 4036480 | 40 | 4.30E-06 | None | 1.70E-02 | None | | Naphthalene | 2.46E-05 | 1019.2 | 4036480 | 40 | 1.50E-02 | None | 5.96E+01 | None | | Propylene | 5.27E-03 | 1019.2 | 4036480 | 40 | 3.22E+00 | None | 1.28E+04 | 1.20E+05 | | Toluene | 2.34E-04 | 1019.2 | 4036480 | 40 | 1.43E-01 | 8.20E+01 | 5.67E+02 | 1.20E+04 | | Xylenes | 6.33E-04 | 1019.2 | 4036480 | 40 | 3.87E-01 | 4.90E+01 | 1.53E+03 | 2.70E+04 | | Diesel Exhaust Particulate | | | | | 9.10E-02 | None | 4.55E+00 | 5.80E-01 | #### AMMONIA SLIP EMISSION ESTIMATE FOR NATURAL GAS FIRED ENGINE GENERATOR SETS Ammonia lb/MMBtu = ppm x 1/molar volume x MW x Fd x 20.9/(20.9 - %O2) ppm = 10 ppm @15%O2 limit molar volume = 386.8 dscf/lbmol @ 14.696 psia, 70 deg. F MW = molecular weight, lb/lb-mol Fd = 8743 dscf/MMBtu for Natural Gas @ 70 deg. F Ammonia lb/MMBtu = 10 E-06 ft3 of NH3/ft3 stack gas x 1/386.8 dscf/lb-mol x 17 lb/lb-mol x 8743 dscf/MMBtu x 20.9/(20.9 - 15) Ammonia lb/MMBtu = 0.02722 0.01361 | Pollutant | Value | Unit | One Engine
Maximum
Firing Rate
(MMBtu/hr) | One Engine
Normal Operation
Emissions
(lb/hr) | One Engine
Normal Operation
Emissions
(lb/day) | Maximum
Operation
(hr/yr) | One Engine
Normal Operation
Emissions
(lb/yr) | One Engine
Normal Operation
Emissions
(ton/yr) | |-----------|---------|----------|--|--|---|---------------------------------|--|---| | Ammonia | 0.01361
 lb/MMBtu | 72.08 | 0.98 | 23.54 | 4000 | 3924.04 | 1.96 | Commisioning Period Emissions and Startup/Shutdown Emissions Not Included | Pollutant | Value | Unit | 14 Engines
Maximum
Firing Rate
(MMBtu/hr) | 14 Engines
Normal Operation
Emissions
(lb/hr) | 14 Engines
Normal Operation
Emissions
(lb/day) | Per Engine
Maximum
Operation
(hr/yr) | 14 Engines
Normal Operation
Emissions
(lb/yr) | 14 Engines Normal Operation Emissions (ton/yr) | |-----------|---------|----------|--|--|---|---|--|--| | Ammonia | 0.01361 | lb/MMBtu | 1009.12 | 13.73 | 329.62 | 4000 | 54936.49 | 27.47 | Commisioning Period Emissions and Startup/Shutdown Emissions Not Included # **APPENDIX B** # **Health Risk Screening Results** #### - INTEROFFICE MEMORANDUM **Revised – April 19, 2007** TO: Brian Lusher Via: Scott B. Lutz Daphne Y. Chong Glen Long FROM: Irma Salinas SUBJECT: Results of Health Risk Screening Analysis for Eastshore Energy Center (Hayward, CA), Standby Generator Diesel Engine, and 14 Natural Gas Engines Plant #18041, Application #15195 Per your request, we have completed a health risk screening analysis for the above referenced permit application. The analysis estimates the incremental health risk resulting from toxic air contaminant (TAC) emissions from operation of a standby generator diesel engine and 14 natural gas engines at this facility. Results from the health risk screening analysis indicate that the maximum cancer risk is estimated at 3.9 in a million. In accordance with the District's Regulation 2-5, this risk level is considered acceptable as the engine meets current TBACT requirements. *EMISSIONS:* The emission rates for toxic air contaminants (TAC) were calculated based on the following assumptions: - 1. Each IC Engine will operate intermittently (4000 hours per year) at a firing rate of 72.8 MMBTU/hr. There are a total of 14 engines. TAC emissions estimates were made using emission factors from the CARB CATEF database for Natural Gas Fired IC Engines >650 hp, lean-burn engines. The engines will have an abatement efficiency of 40% (Oxidation Catalyst). See Table #1 - 2. Diesel Engine will operate 50 hours for testing and maintenance purposes, 369 BHP hr, | Source | PM Emission Factor | Horsepower | Annual Usage | Diesel PM | |--------|--------------------|------------|--------------|---------------------| | | (g/bhp-hr) | | (hours/year) | Emissions (lb/year) | | S15 | 0.1118 | 369 | 50 | 4.5434 | MODELING: The ISCST3 air dispersion computer model was used to estimate annual average and maximum 1-hour ambient air concentrations. The model was run with Union City (5 year) meteorological data, emission rate scalars to account for operations that occur only during normal working hours and Hayward terrain data. Model runs were made with urban dispersion coefficients. In addition, to be more conservative a gradual plume rise was used. Stack and building parameters for the analysis were based on information provided by the applicant. HEALTH RISK: Estimates of residential risk assume potential exposure to annual average TAC concentrations occur 24 hours per day, 350 days per year, for a 70-year lifetime. Risk estimates for offsite workers assume potential exposure occurs 8 hours per day, 245 day per year, for 40 years. The estimated health risks for this permit application are presented in the table below. #### Sources 1-14 (Natural Gas Engines) | Receptor | Cancer Risk | Non-cancer Chronic
Hazard Index (HI) | Max. Acute Non-
cancer HI | |----------|-------------------|---|------------------------------| | Resident | 0.32 in a million | 0.005 | 0.028 | | Worker | 3.54 in a million | 0.065 | 0.066 | #### Source 15 (Diesel Engine) | Receptor | Cancer Risk | Non-cancer Chronic
Hazard Index (HI) | |----------|---------------------|---| | Resident | 0.0113 in a million | 0.000068 | | Worker | 0.63 in a million | 0.00045 | #### Sources 1-15 Cumulative at maximum point of impact | Receptor | Cancer Risk | Non-cancer Chronic
Hazard Index (HI) | Max. Acute Non-
cancer HI | |----------|---------------------|---|------------------------------| | Resident | 0.3305 in a million | 0.0050 | 0.028 | | Worker | 3.856 in a million | 0.06522 | 0.066 | Including the compound Acrolein, the results are as follows: #### Sources 1-14 (Natural Gas Engines) | Receptor | Cancer Risk | Non-cancer Chronic
Hazard Index (HI) | Max. Acute Non-
cancer HI | |----------|-------------------|---|------------------------------| | Resident | 0.32 in a million | 0.008 | 0.201 | | Worker | 3.54 in a million | 0.104 | 0.470 | #### No Change in the diesel engine #### Sources 1-15 Cumulative at maximum point of impact | Receptor | Cancer Risk | Non-cancer Chronic
Hazard Index (HI) | Max. Acute Non-
cancer HI | |----------|---------------------|---|------------------------------| | Resident | 0.3305 in a million | 0.0080 | 0.201 | | Worker | 3.856 in a million | 0.10422 | 0.470 | | Potential hours/yr | 8760 | |----------------------------|------| | Operating hours/yr Maximum | 4000 | | ı | | |---|-----| | ı | -1 | | ı | ຜ້ | | ı | 0 | | ı | e | | ı | 100 | | ı | 44 | | ı | _ | | | MEAN | | | lbm/hr after | g/sec | | lbm/yr after | g/sec - | |-----------------|----------|-----------|----------|---------------------|-----------|----------|--------------|--------------------| | SUBSTANCE | Ibs/MMCF | lbs/MMBtu | lbm/hr | Abatement | 1 hr max | lbm/yr | abatement | Annual | | Ammonia | 1.39E+01 | 1.36E-02 | 9.91E-01 | 9.908E-01 | 1.248E-01 | 3.96E+03 | 3963.232 | 3963.232 5.700E-02 | | 1,3-Butadiene | 3.67E-01 | 3.60E-04 | 2.62E-02 | 1.572E-02 | 1.980E-03 | 1.05E+02 | | 9.042E-04 | | Acetaldehyde | 5.29E-01 | 5.19E-04 | 3.78E-02 | 2.265E-02 | 2.854E-03 | 1.51E+02 | 90.615 | 90.615 1.303E-03 | | Acrolein | 5.90E-02 | 5.78E-05 | 4.21E-03 | 2.527E-03 3.183E-04 | 3.183E-04 | 1.68E+01 | 10,106 | 1.454E-04 | | Benzene | 2.18E-01 | 2.14E-04 | 1.56E-02 | 9.336E-03 | 1.176E-03 | 6.22E+01 | 37.342 | 5.371E-04 | | PAHs [as B(a)P] | 1.71E-05 | 1.68E-08 | 1.22E-06 | 7.343E-07 9.253E-08 | 9.253E-08 | 4.90E-03 | 0.003 | 4.225E-08 | | Ethylbenzene | 7.11E-02 | 6.97E-05 | 5.07E-03 | 3.045E-03 3.836E-04 | 3.836E-04 | 2.03E+01 | 12.179 | 1.752E-04 | | Formaldehyde | 4.71E+00 | 4.62E-03 | 3.36E-01 | 2.017E-01 | 2.541E-02 | 1.34E+03 | 806.795 | 1.160E-02 | | Naphthalene | 2.51E-02 | 2.46E-05 | 1.79E-03 | 1.075E-03 | 1.354E-04 | 7.17E+00 | 4.299 | 6.184E-05 | | Propylene | 5.38E+00 | 5.27E-03 | 3.84E-01 | 2.304E-01 | 2.903E-02 | 1.54E+03 | 921.562 | 1.326E-02 | | Toluene | 2.39E-01 | 2.34E-04 | 1.71E-02 | 1.023E-02 | 1.290E-03 | 6.82E+01 | 40.939 | 5.888E-04 | | Xylene (Total) | 6.46E-01 | 6.33E-04 | 4.61E-02 | 2.766E-02 3.486E-03 | 3 486F-03 | 1 84F+02 | 110.656 | 110 656 1 592E-03 | # Emissions Calculations for a Single NG Engine | Application No. Plant No. Company Input Data IC Engine, MMBtu/hr Hours Of Operation, hr/yr Higher Heating Value, Btu/cf per AP 42 for natural gas Calculated Value Fuel Usage MMcf/hr | EastShore Energy Center 72.8 3900 1020 | 4000 | |---|--|--------| | Input Data IC Engine, MMBtu/hr Hours Of Operation, hr/yr Higher Heating Value, Btu/cf per AP 42 for natural gas | 72.8
3900
1020 | 4000 | | Calculated Value Fuel Usage MMcf/hr Fuel Usage MMcf/yr | 7.14E-02
278.35 | 285.49 | | Abatement Efficiency # of Engines | 40.00%
14.00 | | | PAH(s) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene | | equivalents 0.1 1 0.1 0.1 0.1 | MEAN
Ibs/MMCF
5.88E-06
2.70E-06
4.09E-06
7.83E-07 | |--|----------|-------------------------------|--| | Benzo(a)pyrene Benzo(b)fluoranthene | 4.09E-05 | 0.1 | 4.09E-06 | | Benzo(k)fluoranthene | 7.83E-06 | 0.1 | 7.83E-07 | | Chrysene | 1.43E-05 | 0.01 | 1.43E-07 | | Dibenz(a,h)anthracene | 2.70E-06 | 1.05 | 2.84E-06 | | Indeno(1,2,3-cd)pyrene | 7.17E-06 | 0.1 | 7.17E-07 | | Total | | 8 | 1.71E-05 | #### Emissions Calculations for a Single NG Engine Application No. Plant No. Company Input Data EastShore Energy Center IC Engine, MMBtu/hr Hours Of Operation, hr/yr Higher Heating Value, Btu/cf 72.8 3900 4000 1020 per AP 42 for natural gas Calculated Value Fuel Usage MMcf/hr 7.14E-02 Fuel Usage MMcf/yr 278.35 285.49 Abatement Efficiency 40.00% # of Engines 14.00 | | MEAN | PEF | MEAN | |------------------------|----------|-------------|----------| | PAH(s) | lbs/MMCF | equivalents | lbs/MMCF | | Benzo(a)anthracene | 5.88E-05 | 0.1 | 5.88E-06 | | Benzo(a)pyrene | 2.70E-06 | 1 | 2.70E-06 | | Benzo(b)fluoranthene | 4.09E-05 | 0.1 | 4.09E-06 | | Benzo(k)fluoranthene | 7.83E-06 | 0.1 | 7.83E-07 | | Chrysene | 1.43E-05 | 0.01 | 1.43E-07 | | Dibenz(a,h)anthracene | 2.70E-06 | 1.05 | 2.84E-06 | | Indeno(1,2,3-cd)pyrene | 7.17E-06 | 0.1 | 7.17E-07 | | Total | | - | 1.71E-05 | CATEF Emission Factors for Natural Gas Fired Industrial Turbines SCC 20200202 Potential hours/yr 8760 Operating hours/yr Maximum 4000 Table #1 | SUBSTANCE | MEAN
lbs/MMCF | lbs/MMBtu | lbm/hr | Ibm/hr after
Abatement | g/sec
1 hr max | lbm/yr | lbm/yr after abatement | g/sec -
Annual | |-----------------
------------------|-----------|----------|---------------------------|-------------------|----------|------------------------|-------------------| | Ammonia | 1.39E+01 | 1.36E-02 | 9.91E-01 | 9.908E-01 | 1.248E-01 | 3.96E+03 | 3963.232 | 5.700E-02 | | 1,3-Butadiene | 3.67E-01 | 3.60E-04 | 2.62E-02 | 1.572E-02 | 1.980E-03 | 1.05E+02 | 62.865 | 9.042E-04 | | Acetaldehyde | 5.29E-01 | 5.19E-04 | 3.78E-02 | 2.265E-02 | 2.854E-03 | 1.51E+02 | 90.615 | 1.303E-03 | | Acrolein | 5.90E-02 | 5.78E-05 | 4.21E-03 | 2.527E-03 | 3.183E-04 | 1.68E+01 | 10.106 | 1.454E-04 | | Benzene | 2.18E-01 | 2.14E-04 | 1.56E-02 | 9.336E-03 | 1.176E-03 | 6.22E+01 | 37.342 | 5.371E-04 | | PAHs [as B(a)P] | 1.71E-05 | 1.68E-08 | 1.22E-06 | 7.343E-07 | 9.253E-08 | 4.90E-03 | 0.003 | 4.225E-08 | | Ethylbenzene | 7.11E-02 | 6.97E-05 | 5.07E-03 | 3.045E-03 | 3.836E-04 | 2.03E+01 | 12.179 | 1.752E-04 | | Formaldehyde | 4.71E+00 | 4.62E-03 | 3.36E-01 | 2.017E-01 | 2.541E-02 | 1.34E+03 | 806.795 | 1.160E-02 | | Naphthalene | 2.51E-02 | 2.46E-05 | 1.79E-03 | 1.075E-03 | 1.354E-04 | 7.17E+00 | 4.299 | 6.184E-05 | | Propylene | 5.38E+00 | 5.27E-03 | 3.84E-01 | 2.304E-01 | 2.903E-02 | 1.54E+03 | 921.562 | 1.326E-02 | | Toluene | 2.39E-01 | 2.34E-04 | 1.71E-02 | 1.023E-02 | 1.290E-03 | 6.82E+01 | 40.939 | 5.888E-04 | | Xylene (Total) | 6.46E-01 | 6.33E-04 | 4.61E-02 | 2.766E-02 | 3.486E-03 | 1.84E+02 | 110.656 | 1.592E-03 | # Health Risk Screening Analysis Summary forNatural Gas-fired Engine Facility = Eastshore Energy Center (Hayward, CA) - Plant #18041, Application #15195 - ISCST3 Air Dispersion Model Used - Union City 5 yrs of Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used Urban Land Use | Health Risk E. | stimates: | | | Residential Receptor | | | | | | Residential Receptor | • | |-----------------|-------------------------|--|---|--|------------------------------|---|-------------|--------------|-------------------------------|---|---| | TACs | | sion Rate (g/sec) | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ²
(ug/m ³) | Inhalation Dose ³ | Inhalation Cancer
Potency Factor (CPF) | Chronic REL | Acute REL | Max. Cancer Risk ⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | | Annual | Hourly | (-g) | (ug/iii) | (mg/kg-day) | (mg/kg-day) ⁻¹ | (ug/m³) | (ug/m³) | | 00.1001 114 | oanoon ma | | Ammonia | 5.7E-02 | 1.2E-01 | 6.9E-02 | 1.3E+01 | 2.1E-05 | NC | 2.00E+02 | 3.20E+03 | NC | 3.4E-04 | 4.0E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 6.5E-04 | 1.2E-01 | 2.0E-07 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.0E-08 | 1.1E-05 | 9.3E-05 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 1.1E-03 | 2.0E-01 | 3.3E-07 | 6.0E-01 | 2.0E+01 | NA | 2.0E-07 | 5.5E-05 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 1.6E-03 | 2.9E-01 | 4.8E-07 | 1.0E-02 | 9.0E+00 | NA | 4.8E-09 | 1.8E-04 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 5.1E-08 | 9.5E-06 | 1.5E-11 | 6.0E+01 | NA | NA | 9.3E-10 | NA | NA | | Ethylbenzene | 1.8E-04 | 3.8E-04 | 2.1E-04 | 4.0E-02 | 6.4E-08 | NC | 2.0E+03 | NA | NC | 1.1E-07 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 1.4E-02 | 2.6E+00 | 4.2E-06 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 8.9E-08 | 4.7E-03 | 2.8E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 7.5E-05 | 1.4E-02 | 2.3E-08 | 1.2E-01 | 9.0E+00 | NA | 2.7E-09 | 8.3E-06 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 1.6E-02 | 3.0E+00 | 4.8E-06 | NC | 3.0E+03 | NA | NC | 5.3E-06 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 7.1E-04 | 1.3E-01 | 2.2E-07 | NC | 3.0E+02 | 3.7E+04 | NC | 2.4E-06 | 3.6E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 1.9E-03 | 3.6E-01 | 5.8E-07 | NC | 7.0E+02 | 2.2E+04 | NC | 2.8E-06 | 1.6E-05 | | Maximum Annu | al Average Chi/Q ([ug/m | Maximum Annual Average Chi/Q ([ug/m³]/[g/sec]) at Resident = 1.21000 | | | | | | TOTAL RISK = | 3.2E-07 | 0.005 | 0.028 | Maximum Hourly Chi/Q ([ug/m³]/[g/sec]) = 103 - Max. Annual Average Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) - 1. max. Annua Average uncertaind program = max. Annua emission Rate (gisec) max. Annua Average uncertaind (gisec) max. Annua Average uncertaind uncerta | | | | | Worker Receptor | | | | | | Worker Receptor | | |-----------------|--------------------------|---|---|--|---|--|------------------------|----------------------|-------------------------------|---|---| | TACs | Maximum Emis | sion Rate (g/sec) | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ²
(ug/m ³) | Inhalation Dose ³
(mg/kg-day) | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Chronic REL
(ug/m³) | Acute REL
(ug/m³) | Max. Cancer Risk ⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | | | | | | | | | | | | | | Ammonia | 5.7E-02 | 1.2E-01 | 1.86604 | 3.0E+01 | 2.3E-04 | NC | 2.00E+02 | 3.20E+03 | NC | 4.6E-03 | 9.4E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 0.01758 | 2.8E-01 | 2.2E-06 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.2E-07 | 1.4E-04 | 2.2E-04 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 0.0296 | 4.8E-01 | 3.7E-06 | 6.0E-01 | 2.0E+01 | NA | 2.2E-06 | 7.3E-04 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 0.04266 | 6.9E-01 | 5.3E-06 | 1.0E-02 | 9.0E+00 | NA | 5.3E-08 | 2.3E-03 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 0.00000 | 2.2E-05 | 1.7E-10 | 6.0E+01 | NA | NA | 1.0E-08 | NA | NA | | Ethylbenzene | 1.8E-04 | 3.8E-04 | 0.00573 | 9.3E-02 | 7.2E-07 | NC | 2.0E+03 | NA | NC | 1.4E-06 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 0.37987 | 6.1E+00 | 4.8E-05 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 1.0E-06 | 6.2E-02 | 6.5E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 0.00202 | 3.3E-02 | 2.5E-07 | 1.2E-01 | 9.0E+00 | NA | 3.0E-08 | 1.1E-04 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 0.43391 | 7.0E+00 | 5.4E-05 | NC | 3.0E+03 | NA | NC | 7.1E-05 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 0.01928 | 3.1E-01 | 2.4E-06 | NC | 3.0E+02 | 3.7E+04 | NC | 3.1E-05 | 8.4E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 0.05210 | 8.4E-01 | 6.5E-06 | NC | 7.0E+02 | 2.2E+04 | NC | 3.6E-05 | 3.8E-05 | | Maximum An | aual Average Chi/O /fug/ | ·
im ³ 1/[a/coc]) at Markor – | 22 72400 | | | | | TOTAL DISK - | 2 54E-06 | 0.065 | 0.066 | Maximum Hourly Chi/Q ([ug/m³]/[g/sec]) = 241.45547 - Max. Annual Average Exposure Concentration (ug/m²) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m²) per g/sec) Max. Hourly Concentration (ug/m²) = Max. Hourly Emission Rate (g/sec) * Max. Hourly Chi/Q (ug/m²) per g/sec) - 2. max. nouny Concentration (ugin) = max. nouny clinisoun rate (pase), max. nouny Clini Quijni pie (general). 3. Inhalaiento Been (mgk-day) = An-Aug. Onc. (ugin) * Pie (Rugh-ghy) * (DF (mg-m) (ugil.) * EAF_(meteral)). 4. Max. Cancer Risk = Inhalaiento Dose (mgk-day) * CPF (mgkg-day)* 5. Max. Chronic Non-cancer Hazard Quotient = Ann. Avg. Conc. (ugim*) * EAF_(meteral) ("Yornic REL (ugim*) 6. Max. Anote Non-cancer Hazard Quotient = Hourly Conc. (ugim*) / Acute REL (ugim*) #### Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | 7 | |--|-------------------|-----------------------|-----------------------|---|-------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustme | nt Factors (EAFs) | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 16 | 5 | 50 | 70 | (caricer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 0.50 | 1.00 | 0.98 | 0.57 | 0.28 | 0.49 | | Fraction of Time Student is Present While the Source is Operating | 0.63 | 1.00 | 0.72 | 0.13 | 0.06 | 0.45 | ^{7.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. | =xpccu.c. a | | | | | | | |-------------|------------|-------------|----------------|---------------|-----------------------------|----------------------| | | | | | | Units | | | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR)8 | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug-L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{8.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). #### Health Risk Screening Analysis Summary for Natural Gas-fired Engine Facility = Eastshore Energy Center (Hayward, CA) - Plant #18041, Application #15195 - ISCST3 Air Dispersion Model Used - Union City 5 yrs of Meteorological Data Used Hayward Terrain Data Used - Daytime Scalars
Used - Urban Land Use | Health Risk E | stimates: | | I | Residential Receptor | | | | | | Residential Recepto | r | |-----------------|-----------------------------------|-------------------------|---|--|---|---|------------------------|----------------------|-------------------|---|---| | TACs | Maximum Emis | sion Rate (g/sec) | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ²
(ug/m ³) | Inhalation Dose ³
(mg/kg-day) | Potency Factor (CPF)
(mg/kq-day) ⁻¹ | Chronic REL
(ug/m³) | Acute REL
(ug/m³) | Max. Cancer Risk⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | Ammonia | 5.7E-02 | 1.2E-01 | 6.9E-02 | 1.3E+01 | 2.1E-05 | NC NC | 2.00E+02 | 3.20E+03 | NC | 3.4E-04 | 4.0E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 6.5E-04 | 1.2E-01 | 2.0E-07 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.0E-08 | 1.1E-05 | 9.3E-05 | | Acrolein | 1.5E-04 | 3.2E-04 | 1.8E-04 | 3.3E-02 | 5.3E-08 | NC | 6.0E-02 | 1.9E-01 | NC | 2.9E-03 | 1.7E-01 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 1.1E-03 | 2.0E-01 | 3.3E-07 | 6.0E-01 | 2.0E+01 | NA | 2.0E-07 | 5.5E-05 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 1.6E-03 | 2.9E-01 | 4.8E-07 | 1.0E-02 | 9.0E+00 | NA | 4.8E-09 | 1.8E-04 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 5.1E-08 | 9.5E-06 | 1.5E-11 | 6.0E+01 | NA | NA | 9.3E-10 | NA | NA | | Ethylbenzene | 1.8E-04 | 3.8E-04 | 2.1E-04 | 4.0E-02 | 6.4E-08 | NC | 2.0E+03 | NA | NC | 1.1E-07 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 1.4E-02 | 2.6E+00 | 4.2E-06 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 8.9E-08 | 4.7E-03 | 2.8E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 7.5E-05 | 1.4E-02 | 2.3E-08 | 1.2E-01 | 9.0E+00 | NA | 2.7E-09 | 8.3E-06 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 1.6E-02 | 3.0E+00 | 4.8E-06 | NC | 3.0E+03 | NA | NC | 5.3E-06 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 7.1E-04 | 1.3E-01 | 2.2E-07 | NC | 3.0E+02 | 3.7E+04 | NC | 2.4E-06 | 3.6E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 1.9E-03 | 3.6E-01 | 5.8E-07 | NC | 7.0E+02 | 2.2E+04 | NC | 2.8E-06 | 1.6E-05 | | Maximum Annual | Average Chi/Q ([ug/m ³ | V[g/sec]) at Resident = | 1.21000 | | | | | TOTAL RISK = | 3.2E-07 | 0.008 | 0.201 | Maximum Hourly Chi/Q ([ug/m3]/[g/sec]) = 103 - 4. Max. Cantronic Non-cancer Hazard Quotient = Hourly Conc. (ug/m²) * CPF (mg/kg-day)* 5. Max. Chronic Non-cancer Hazard Quotient = Ann. Avg. Conc. (ug/m²) * EAF (non-cancer) 6. Max. Acute Non-cancer Hazard Quotient = Hourly Conc. (ug/m²) / Acute REL (ug/m²) | | | | | Worker Receptor | | | | | | Worker Receptor | | |-----------------|--|-------------------|---|---|---|--|------------------------|----------------------|-------------------------------|---|---| | TACs | Maximum Emiss
Annual | sion Rate (g/sec) | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ² (ug/m ³) | Inhalation Dose ³
(mg/kg-day) | Inhalation Cancer
Potency Factor (CPF)
(mg/kq-day) ⁻¹ | Chronic REL
(ug/m³) | Acute REL
(ug/m³) | Max. Cancer Risk ⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | Ammonia | 5.7E-02 | 1.2E-01 | 1.86604 | 3.0E+01 | 2.3E-04 | NC | 2.00E+02 | 3.20E+03 | NC | 4.6E-03 | 9.4E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 0.01758 | 2.8E-01 | 2.2E-06 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.2E-07 | 1.4E-04 | 2.2E-04 | | Acrolein | 1.5E-04 | 3.2E-04 | 0.00476 | 7.7E-02 | 6.0E-07 | NC | 6.0E-02 | 1.9E-01 | NC | 3.9E-02 | 4.0E-01 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 0.0296 | 4.8E-01 | 3.7E-06 | 6.0E-01 | 2.0E+01 | NA | 2.2E-06 | 7.3E-04 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 0.04266 | 6.9E-01 | 5.3E-06 | 1.0E-02 | 9.0E+00 | NA | 5.3E-08 | 2.3E-03 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 0.00000 | 2.2E-05 | 1.7E-10 | 6.0E+01 | NA | NA | 1.0E-08 | NA | NA | | Ethylbenzene | 1.8E-04 | 3.8E-04 | 0.00573 | 9.3E-02 | 7.2E-07 | NC | 2.0E+03 | NA | NC | 1.4E-06 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 0.37987 | 6.1E+00 | 4.8E-05 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 1.0E-06 | 6.2E-02 | 6.5E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 0.00202 | 3.3E-02 | 2.5E-07 | 1.2E-01 | 9.0E+00 | NA | 3.0E-08 | 1.1E-04 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 0.43391 | 7.0E+00 | 5.4E-05 | NC | 3.0E+03 | NA | NC | 7.1E-05 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 0.01928 | 3.1E-01 | 2.4E-06 | NC | 3.0E+02 | 3.7E+04 | NC | 3.1E-05 | 8.4E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 0.05210 | 8.4E-01 | 6.5E-06 | NC | 7.0E+02 | 2.2E+04 | NC | 3.6E-05 | 3.8E-05 | | Maximum Annua | Maximum Annual Average Chi/Q (fug/m³\fg/secl) at Worker = 32.73498 | | | | | | TOTAL RISK = | 3.54E-06 | 0.104 | 0.470 | | - Maximum Annual Average Chi Q (tigim³) [giseq] at Worker = 32.73498 Maximum Houry Chi Q (tigim³) [giseq] = 24.145547 1. Max. Annual Average Exposure Concentration (ugim³) = Max. Annual Emission Rate (gisec) * Max. Annual Average Exposure Concentration (ugim³) = Max. Houry Chini Q (tigim³) per gisec) 2. Max. Hourly Concentration (ugim³) = Max. Houry Emission Rate (gisec) * Max. Houry Chini Q (tigim³) per gisec) 3. Inhalation Dose (mg/kgdg) = Ann. Avg. Conc. (ugim³) * BR (Likg-day) * UCF (mg-m³) (ugil.) * EAF_(moreoreal) 4. Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day) * 6. Max. Chorio Non-cancer Hazard Quotient = Ann. Avg. Conc. (ugim³) * EAF_(moreoreal) Chronic REL (ugim³) 6. Max. Acute Non-cancer Hazard Quotient = Hourly Conc. (ugim³) * Acute REL (ugim³) #### Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | | |--|-------------------|-----------------------|-----------------------|---|-------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustme | nt Factors (EAFs) | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 16 | 5 | 50 | 70 | (cancer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 0.50 | 1.00 | 0.98 | 0.57 | 0.28 | 0.49 | | Fraction of Time Student is Present While the Source is Operating | 0.63 | 1.00 | 0.72 | 0.13 | 0.06 | 0.45 | Thus, if a receptor is present 10 hoursday, but the source operates only 8 hoursday, the maximum that the receptor can be present while a source is operating can not exceed one. Thus, if a receptor is present 10 hoursday, but the source operates only 8 hoursday, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). | | , | | | | | 1 | |----------|------------|-------------|----------------|---------------|-----------------------------|----------------------| | | | | | | Units | | | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR)8 | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug-L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{8.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). ## Health Risk Screening Analysis Summary for Standby Generator Diesel Engine Facility = Eastshore Energy Center, (Hayward, CA) - Plant #18041; Application #15195 - ISC Air Dispersion Model Used - Union City Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used - Urban Land Use @ pt of Max for Natural Gas | Health Ris | lealth Risk Estimates: | | | | | | el PM | | | |------------|------------------------|--------------------------|--|---|---------|--|---|-------------------|---| | Receptor | Max. Annual I | Emission Rate
(g/sec) | Max. Annual Avg.
Chi/Q
(ug/m³ per g/sec) | Annual Average
Exposure
Concentration ¹
(ug/m³) | _ | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Inhalation Reference
Exposure Level (REL)
(ug/m³) | max. Calicel Misk | Max. Non-cancer
Hazard Quotient ⁴ | | Resident | 4.5434 | 6.5E-05 | 4.8E-01 | 0.00003 | 9.5E-09 | 1.1E+00 | 5.0E+00 | 1.05E-08 | 6.3E-06 | | Worker | 4.5434 | 6.5E-05 | 1.8E+01 | 0.00115 | 2.9E-07 | 1.1E+00 | 5.0E+00 | 3.16E-07 | 2.2E-04 | | Student | 0 | 0.0E+00 | 0 | 0.0E+00 | 0.0E+00 | 1.1E+00 | 5.0E+00 | 0.0E+00 | 0.0E+00 | ^{1.} Annual Average Exposure Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | |
--|-------------------|-----------------------|-----------------------|---|-------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustme | nt Factors (EAFs) | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 1 | 1 | 50 | 70 | (cancer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 1.00 | 1.00 | 0.98 | 0.57 | 0.56 | 0.98 | | Fraction of Time Student is Present While the Source is Operating | 1.00 | 1.00 | 0.72 | 0.13 | 0.09 | 0.72 | ^{5.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. | | | | | | Units | | |----------|------------------------|-------------|----------------|---------------|-----------------------------|----------------------| | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR) ⁶ | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug/L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{6.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). ^{2.} Inhalation Dose (mg/kg-day) = Ann. Avg. Exp. Conc. (ug/m³) * BR (L/kg-day) * UCF (mg-m³)/(ug/L) * EAF (cancer risk) ^{3.} Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day)¹ ^{4.} Max. Non-cancer Hazard Quotient = Ann. Avg. Exp. Conc. (ug/m³) * EAF_(non-cancer) / REL (ug/m³) Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). #### Health Risk Screening Analysis Summary for Standby Generator Diesel Engine Facility = Eastshore Energy Center, (Hayward, CA) - Plant #18041; Application #15195 MAX PT - ISC Air Dispersion Model Used - Union City Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used - Urban Land Use | Health Ris | k Estimates: | • | | Dies | el PM | | | | | |------------|---------------|--------------------------|--|---|--|--|---|---------------------|---| | Receptor | Max. Annual E | Emission Rate
(g/sec) | Max. Annual Avg.
Chi/Q
(ug/m³ per g/sec) | Annual Average
Exposure
Concentration ¹
(ug/m³) | Inhalation Dose ² (mg/kg-day) | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Inhalation Reference
Exposure Level (REL)
(ug/m³) | IVIAA. GAIIGGI NISK | Max. Non-cancer
Hazard Quotient ⁴ | | Resident | 4.5434 | 6.5E-05 | 5.2E-01 | 0.00003 | 1.0E-08 | 1.1E+00 | 5.0E+00 | 1.13E-08 | 6.8E-06 | | Worker | 4.5434 | 6.5E-05 | 3.5E+01 | 0.00229 | 5.7E-07 | 1.1E+00 | 5.0E+00 | 6.30E-07 | 4.5E-04 | | Student | 0 | 0.0E+00 | 0 | 0.0E+00 | 0.0E+00 | 1.1E+00 | 5.0E+00 | 0.0E+00 | 0.0E+00 | ^{1.} Annual Average Exposure Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | | |--|-------------------|-----------------------|-----------------------|---|-------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustme | nt Factors (EAFs) | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 1 | 1 | 50 | 70 | (cancer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 1.00 | 1.00 | 0.98 | 0.57 | 0.56 | 0.98 | | Fraction of Time Student is Present While the Source is Operating | 1.00 | 1.00 | 0.72 | 0.13 | 0.09 | 0.72 | ^{5.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. | | | | | | Units | | |----------|------------------------|-------------|----------------|---------------|-----------------------------|----------------------| | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR) ⁶ | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug/L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{6.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). ^{2.} Inhalation Dose (mg/kg-day) = Ann. Avg. Exp. Conc. (ug/m³) * BR (L/kg-day) * UCF (mg-m³)/(ug/L) * EAF_(cancer risk) ^{3.} Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day)¹ ^{4.} Max. Non-cancer Hazard Quotient = Ann. Avg. Exp. Conc. (ug/m³) * EAF_(non-cancer) / REL (ug/m³) Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). # Risk Screening Assessment Dispersion Modeling Checklist | Application N | o: 15195 Modeler: 7-CS | |------------------|--| | GEOGRAPH | IIC DATA | | BEEST run fo | r the following land use (check all that apply): | | Coordinate sy | stem used: NAD27 NAD83 Trelative | | Was elevated | terrain data used? | | If yes, name(s | of USGS DEM quad used: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | . componen | OCYCLE DAM | | | OGICAL DATA | | Screening: | screen daytime screen | | Closest met da | ata set identified in BLOB program Distance | | Actual: | Name of data set: Union () | | | Year of data: 200 2004 | | | Mixing Height (m): 600 m | | | Anemometer height (m): | | SOURCE DA | TA | | | | | Venting: | ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ | | | horizontal evertical (Check all for which the model was run) | | Emis, scalars: | yes no (note - emission scalars can't be used with screening met. data) | | | Operating hours 1-29 Scalar value 1 (24/# of hours of operation) | | RECEPTOR | S | | Are schools w | ithin: 500 feet? (HRSA report required) 1000 feet? (HRSA report required) 1/4 mile? | | | no schools within 1000 feet. | | Are receptors | located within a building cavity region? yes no (does the model output show zero | | 1 | concentrations in the wake of nearby buildings?) | | Is ves, was IS | CPRIME run to determine cavity region concentration? | | | PRIME max. concentration was higher lowerthan the max ISC concentration | | 11 900, 1110 100 | Transcriber Concentration Washington Library Concentration | | COMMENTS | 3: | | US | ed was regulatory defult - more conservative | | | gradual plume rise | | | | 6/27/2005 5\modeling checklist.doc # Health Risk Screening Analysis Summary forNatural Gas-fired Engine Facility = Eastshore Energy Center (Hayward, CA) - Plant #18041, Application #15195 - ISCST3 Air Dispersion Model Used - Union City 5 yrs of Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used Urban Land Use | Health Risk Estimates: | | | Residential Receptor | | | | | | Residential Receptor | | | |------------------------|--|---------|---|--|------------------------------|---|---------------------------------------|-----------|-------------------------------|---|---| | TACs | Maximum Emission Rate (g/sec) | | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ²
(ug/m ³) | Inhalation Dose ³ | Inhalation Cancer
Potency Factor (CPF) | otency Factor (CPF) Chronic REL Acute | Acute REL | Max. Cancer Risk ⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | | Annual | Hourly | (-g) | (ug/iii) | (mg/kg-day) | (mg/kg-day) ⁻¹ | (ug/m³) | (ug/m³) | | 00.1001 114 | oanoon ma | | Ammonia | 5.7E-02 | 1.2E-01 | 6.9E-02 | 1.3E+01 | 2.1E-05 | NC | 2.00E+02 | 3.20E+03 | NC | 3.4E-04 | 4.0E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 6.5E-04 | 1.2E-01 | 2.0E-07 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.0E-08 | 1.1E-05 | 9.3E-05 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 1.1E-03 | 2.0E-01 | 3.3E-07 | 6.0E-01 | 2.0E+01 | NA | 2.0E-07 | 5.5E-05 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 1.6E-03 | 2.9E-01 | 4.8E-07 | 1.0E-02 | 9.0E+00 | NA | 4.8E-09 | 1.8E-04 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 5.1E-08 | 9.5E-06 | 1.5E-11 | 6.0E+01 | NA | NA | 9.3E-10 | NA | NA | | Ethylbenzene | 1.8E-04 |
3.8E-04 | 2.1E-04 | 4.0E-02 | 6.4E-08 | NC | 2.0E+03 | NA | NC | 1.1E-07 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 1.4E-02 | 2.6E+00 | 4.2E-06 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 8.9E-08 | 4.7E-03 | 2.8E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 7.5E-05 | 1.4E-02 | 2.3E-08 | 1.2E-01 | 9.0E+00 | NA | 2.7E-09 | 8.3E-06 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 1.6E-02 | 3.0E+00 | 4.8E-06 | NC | 3.0E+03 | NA | NC | 5.3E-06 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 7.1E-04 | 1.3E-01 | 2.2E-07 | NC | 3.0E+02 | 3.7E+04 | NC | 2.4E-06 | 3.6E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 1.9E-03 | 3.6E-01 | 5.8E-07 | NC | 7.0E+02 | 2.2E+04 | NC | 2.8E-06 | 1.6E-05 | | Maximum Annu | Maximum Annual Average Chi/Q ([ug/m³)/[g/sec]) at Resident = 1.21000 | | | | | | | | 3.2E-07 | 0.005 | 0.028 | Maximum Hourly Chi/Q ([ug/m³]/[g/sec]) = 103 - Max. Annual Average Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) - 1. max. Annua Average uncertaind program = max. Annua emission Rate (gisec) max. Annua Average uncertaind (gisec) max. Annua Average uncertaind uncerta | | | | | Worker Receptor | | | | | | Worker Receptor | | |-----------------|--------------------------|---|---|--|---|--|------------------------|----------------------|-------------------------------|---|---| | TACs | Maximum Emis | sion Rate (g/sec) | Max. Annual Avg.
Conc. ¹ (ug/m ³) | Max. Hourly Conc. ²
(ug/m ³) | Inhalation Dose ³
(mg/kg-day) | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Chronic REL
(ug/m³) | Acute REL
(ug/m³) | Max. Cancer Risk ⁴ | Max. Chronic Non-
cancer HQ ⁵ | Max. Acute Non-
cancer HQ ⁶ | | | | | | | | | | | | | | | Ammonia | 5.7E-02 | 1.2E-01 | 1.86604 | 3.0E+01 | 2.3E-04 | NC | 2.00E+02 | 3.20E+03 | NC | 4.6E-03 | 9.4E-03 | | Benzene | 5.4E-04 | 1.2E-03 | 0.01758 | 2.8E-01 | 2.2E-06 | 1.0E-01 | 6.0E+01 | 1.3E+03 | 2.2E-07 | 1.4E-04 | 2.2E-04 | | 1,3-Butadiene | 9.0E-04 | 2.0E-03 | 0.0296 | 4.8E-01 | 3.7E-06 | 6.0E-01 | 2.0E+01 | NA | 2.2E-06 | 7.3E-04 | NA | | Acetaldehyde | 1.3E-03 | 2.9E-03 | 0.04266 | 6.9E-01 | 5.3E-06 | 1.0E-02 | 9.0E+00 | NA | 5.3E-08 | 2.3E-03 | NA | | PAHs [as B(a)P] | 4.2E-08 | 9.3E-08 | 0.00000 | 2.2E-05 | 1.7E-10 | 6.0E+01 | NA | NA | 1.0E-08 | NA | NA | | Ethylbenzene | 1.8E-04 | 3.8E-04 | 0.00573 | 9.3E-02 | 7.2E-07 | NC | 2.0E+03 | NA | NC | 1.4E-06 | NA | | Formaldehyde | 1.2E-02 | 2.5E-02 | 0.37987 | 6.1E+00 | 4.8E-05 | 2.1E-02 | 3.0E+00 | 9.4E+01 | 1.0E-06 | 6.2E-02 | 6.5E-02 | | Naphthalene | 6.2E-05 | 1.4E-04 | 0.00202 | 3.3E-02 | 2.5E-07 | 1.2E-01 | 9.0E+00 | NA | 3.0E-08 | 1.1E-04 | NA | | Propylene | 1.3E-02 | 2.9E-02 | 0.43391 | 7.0E+00 | 5.4E-05 | NC | 3.0E+03 | NA | NC | 7.1E-05 | NA | | Toluene | 5.9E-04 | 1.3E-03 | 0.01928 | 3.1E-01 | 2.4E-06 | NC | 3.0E+02 | 3.7E+04 | NC | 3.1E-05 | 8.4E-06 | | Xylene (Total) | 1.6E-03 | 3.5E-03 | 0.05210 | 8.4E-01 | 6.5E-06 | NC | 7.0E+02 | 2.2E+04 | NC | 3.6E-05 | 3.8E-05 | | Maximum An | aual Average Chi/O /fug/ | ·
im ³ 1/[a/coc]) at Markor – | 22 72400 | | | | | TOTAL DISK - | 2 54E-06 | 0.065 | 0.066 | Maximum Hourly Chi/Q ([ug/m³]/[g/sec]) = 241.45547 - Max. Annual Average Exposure Concentration (ug/m²) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m²) per g/sec) Max. Hourly Concentration (ug/m²) = Max. Hourly Emission Rate (g/sec) * Max. Hourly Chi/Q (ug/m²) per g/sec) - 2. max. nouny Concentration (ugin) = max. nouny clinisoun rate (pase), max. nouny Clini Quijni pie (general). 3. Inhalaiento Been (mgk-day) = An-Aug. Onc. (ugin) * Pie (Rugh-ghy) * (DF (mg-m) (ugil.) * EAF_(meteral)). 4. Max. Cancer Risk = Inhalaiento Dose (mgk-day) * CPF (mgkg-day)* 5. Max. Chronic Non-cancer Hazard Quotient = Ann. Avg. Conc. (ugim*) * EAF_(meteral) ("Yornic REL (ugim*) 6. Max. Anote Non-cancer Hazard Quotient = Hourly Conc. (ugim*) / Acute REL (ugim*) #### Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | 7 | |--|-------------------|-----------------------|-----------------------|---|---------------------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustment Factors (EA | | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 16 | 5 | 50 | 70 | (caricer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 0.50 | 1.00 | 0.98 | 0.57 | 0.28 | 0.49 | | Fraction of Time Student is Present While the Source is Operating | 0.63 | 1.00 | 0.72 | 0.13 | 0.06 | 0.45 | ^{7.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. | =xpccu.c. a | | | | | | | |-------------|------------|-------------|----------------|---------------|-----------------------------|----------------------| | | | | | | Units | | | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR)8 | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug-L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{8.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). ``` **NO GAS DRY DEPOSITION Data Provided. **Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations **Model Uses URBAN Dispersion. **Model Uses User-Specified Options: 1. Gradual Plume Rise. 2. Stack-tip Downwash. 3. Buoyancy-induced Dispersion. 4. Calms Processing Routine. 5. Not Use Missing Data Processing Routine. 6. User-Specified Wind Profile Exponents. 7. Default Vertical Potential Temperature Gradients. **Model Accepts Receptors on ELEV Terrain. **Model Assumes No FLAGPOLE Receptor Heights. **Model Calculates 1 Short Term Average(s) of: 1-HR and Calculates PERIOD Averages **This Run Includes: 14 Source(s); 31 Source Group(s); and 2357 Receptor(s) **The Model Assumes A Pollutant Type of: NGAS **Model Set To Continue RUNning After the Setup Testing. **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Anem. Hgt. (m) = 20.00; Decay Coef. = 0.000 ; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 2.5 MB of RAM. EECenter(unitless)gradualplumerise_90_NGAS.DTA **Input Runstream File: **Output Print File: EECenter(unitless)gradualplumerise_90_NGAS.LST *** *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC 01/25/07 16:23:53 **MODELOPTs: PAGE 2 GRDRIS ``` CONC *** POINT SOURCE DATA *** | SOURCE | NUMBER
PART. | EMISSION RATE | | V | BASE
ELEV. | STACK
HEIGHT | STACK | STACK | STACK
DIAMETER | | EMISSION RA | | |-------------|-----------------|----------------------------|-----|------------|---------------|-----------------|------------------|----------------|-------------------|------------|-------------|----------| | ID | CATS. | (GICAND/DEC) | | | | | | (M/SEC) | | EXISIS | BY BY | X.I | 1 | 0 | 0.10000E+01 | | | | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 2
3 | 0 | 0.10000E+01 | | | 6.4 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 4 | 0 | 0.10000E+01 | | | 6.6
6.7 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 5 | 0
0 | 0.10000E+01 | | | 6.7 | 21.34
21.34 | 641.65
641.65 | 23.48
23.48 | 1.21
1.21 | YES
YES | | | | 6 | 0 | 0.10000E+01
0.10000E+01 | | | 6.7 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 7 | 0 | 0.10000E+01 | | | 6.7 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 14 | 0 | 0.10000E+01 | | | 7.3 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 13 | 0 | 0.10000E+01 | | | 7.3 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 12 | 0 | 0.10000E+01 | | | 7.3 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 11 | 0 | 0.10000E+01 | | | 7.0 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 10 | 0 | 0.10000E+01 | | | 7.0 | 21.34 | 641.65 | 23.48 | 1.21 | YES | | | | 9 | 0 | 0.10000E+01 | | | | 21.34 | 641.65 | | 1.21 | YES | | | | 8 | 0 | 0.10000E+01 | | | | 21.34 | | | 1.21 | YES | | | | | | | | | | | | | | | | | | *** ISCST3 | - VERSI | ON 02035 *** | | tshore Ene | ergy LLC | | | | | | *** | 01/25/07 | | | | | *** | | | | | | | | *** | 16:23:53 | | **MODELOPTs | : | | | _ | _ | | | | | | | PAGE 3 | | CONC | | URBAN ELI | EV | GF | RDRIS | *** SOURCE | IDs DEF | NING SOU | RCE GROUE | os *** | | | |
 | | | | | | | | | - | | | | | | GROUP ID | | | | | SOUE | RCE IDs | ALL | 1 | , 2 , 3 | , 4 | , 5 | , | 6 | , 7 | , 14 | , 13 | , 12 | , 11 | , 10 | | | 0 | 0 | | | | | | | | | | | | ; | 9 | , 8 , | NATGAS | 1 | , 2 , 3 | 4 | | 5 | 6 | 7 | 1.4 | 13 | 12 | , 11 | 1.0 | | IVATOAD | _ | , 2 , 3 | , 1 | , - | , | O | , , | , 11 | , 13 | , 12 | , 11 | , 10 | | | 9 | , 8 , | | | | | | | | | | | | | | , | S1 | 1 | , | S2 | 2 | , | **MODELOPT: | s : | URBA | N ELEV | | GRDRIS | | | | | | | PAGE 4 | | |-------------|------------|-----------|----------------|-----------|-----------|-----|-----|------|------|------|-------|----------------------|---| | *** ISCST | | ION 02035 | *** ***
*** | Eastshore | Energy LL | C | | | | | * * * | 01/25/07
16:23:53 | | | | 9 | , 8 | , | | | | | | | | | | | | SA11 | 1 | , 2 | , 3 | , 4 | , 5 | , 6 | , 7 | , 14 | , 13 | , 12 | , 11 | , 10 | , | | S14 | 14 | , | | | | | | | | | | | | | S13 | 13 | , | | | | | | | | | | | | | S12 | 12 | , | | | | | | | | | | | | | S11 | 11 | , | | | | | | | | | | | | | S10 | 10 | , | | | | | | | | | | | | | S9 | 9 | , | | | | | | | | | | | | | S8 | 8 | , | | | | | | | | | | | | | S7 | 7 | , | | | | | | | | | | | | | S6 | 6 | , | | | | | | | | | | | | | S5 | 5 | , | | | | | | | | | | | | | S4 | 4 | , | | | | | | | | | | | | | S3 | 3 | , | | | | | | | | | | | | GROUP ID SOURCE IDs | 1 | 1 | , | | | | |------------|-----------|----------------|-------------|----------------|--| | 2 | 2 | , | | | | | 3 | 3 | , | | | | | 4 | 4 | , | | | | | 5 | 5 | , | | | | | 6 | 6 | , | | | | | 7 | 7 | , | | | | | 14 | 14 | , | | | | | 13 | 13 | , | | | | | 12 | 12 | , | | | | | 11 | 11 | , | | | | | 10 | 10 | , | | | | | 9 | 9 | , | | | | | 8 | 8 | , | | | | | *** ISCS | Γ3 - VERS | SION 02035 *** | *** Eastsho | ore Energy LLC | | | **MODELOPT | ſs: | URBAN E | LEV | GRDRIS | | *** DIRECTION SPECIFIC BUILDING DIMENSIONS *** *** *** 01/25/07 16:23:53 PAGE 5 | SOURC | E ID: | 1 | | | | | | | | | | | | | | | | |---------|--------|-----------|-------|-------|-----------|------|--------|----------|-----|-------|----------|-----|-------|----------|-----|-------|----------| | IFV | BH | BW WAK | | 1 | 9.0, | 129.5, 0 | 2 | 9.0, | 126.6, 0 | 3 | 14.9, | 90.5, 0 | 4 | 14.9, | 103.4, 0 | 5 | 14.9, | 113.8, 0 | 6 | 14.9, | 120.7, 0 | | 7 | 14.9, | 124.0, 0 | 8 | 14.9, | 123.5, 0 | 9 | 14.9, | 119.2, 0 | 10 | 9.0, | 40.8, 0 | 11 | 9.0, | 60.0, 0 | 12 | | 79.0, 0 | | 13 | 9.0, | 95.7, 0 | 14 | 9.0, | 109.4, 0 | 15 | 9.0, | 119.8, 0 | 16 | 9.0, | 126.6, 0 | 17 | 9.0, | 129.6, 0 | 18 | 9.0, | 128.6, 0 | | 19 | 9.0, | 129.5, 0 | 20 | 13.3, | 52.8, 0 | 21 | 14.9, | 90.5, 0 | 22 | 13.3, | 53.5, 0 | 23 | 13.3, | 51.4, 0 | 24 | 6.7, | 27.5, 0 | | 25 | 6.7, | 19.9, 0 | 26 | 0.0, | 0.0, 0 | 27 | 6.7, | 38.8, 0 | 28 | 9.0, | 40.8, 0 | 29 | 9.0, | 60.0, 0 | 30 | 9.0, | 79.0, 0 | | 31 | 9.0, | 95.7, 0 | 32 | 9.0, | 109.4, 0 | 33 | 9.0, | 119.8, 0 | 34 | 9.0, | 126.6, 0 | 35 | 9.0, | 129.6, 0 | 36 | 9.0, | 128.6, 0 | SOURC | E ID: | 2 | | | | | | | | | | | | | | | | | IFV | BH | BW WAK | IFV | ВН | BW WAK | IFV | BH | BW WAK | IFV | ВН | BW WAK | IFV | BH | BW WAK | IFV | BH | BW WAK | | 1 | | 129.5, 0 | 2 | | 126.6, 0 | | | 90.5, 0 | | | 103.4, 0 | | | 113.8, 0 | 6 | | 120.7, 0 | | 7 | | 124.0, 0 | | | 123.5, 0 | | | 119.2, 0 | 10 | | 40.8, 0 | 11 | | 60.0, 0 | 12 | | 79.0, 0 | | 13 | | 95.7, 0 | | | 109.4, 0 | 15 | | 119.8, 0 | 16 | | 126.6, 0 | 17 | | 129.6, 0 | 18 | | 128.6, 0 | | 19 | | 50.0, 0 | | | 52.8, 0 | 21 | | 54.0, 0 | 22 | | 53.5, 0 | 23 | | 51.4, 0 | 24 | | 27.5, 0 | | 25 | 6.7, | 19.9, 0 | 26 | 6.7, | 11.6, 0 | 27 | 6.7, | 38.8, 0 | 28 | 9.0, | 40.8, 0 | 29 | 9.0, | 60.0, 0 | 30 | 9.0, | 79.0, 0 | | 31 | 9.0, | 95.7, 0 | 32 | 9.0, | 109.4, 0 | 33 | | 119.8, 0 | 34 | 9.0, | 126.6, 0 | 35 | 9.0, | 129.6, 0 | 36 | 9.0, | 128.6, 0 | E ID: | 3 | | | | | | | | | | | | | | | | | IFV | BH | BW WAK | | BH | BW WAK | | 1 | | 129.5, 0 | 2 | | 126.6, 0 | | | 90.5, 0 | 4 | | 103.4, 0 | | | 113.8, 0 | 6 | | 120.7, 0 | | 7 | | 124.0, 0 | | | 123.5, 0 | 9 | | 119.2, 0 | 10 | | 40.8, 0 | 11 | | 60.0, 0 | 12 | | 79.0, 0 | | 13 | | 95.7, 0 | 14 | | 109.4, 0 | 15 | | 119.8, 0 | 16 | | 126.6, 0 | 17 | | 129.6, 0 | 18 | | 128.6, 0 | | | | 50.0, 0 | | | 52.8, 0 | | | 54.0, 0 | | | 53.5, 0 | | | 51.4, 0 | 24 | | 27.5, 0 | | 25 | | 19.9, 0 | | | 11.6, 0 | 27 | | 38.8, 0 | 28 | | 40.8, 0 | 29 | | 60.0, 0 | 30 | | 79.0, 0 | | 31 | 9.0, | 95.7, 0 | 32 | 9.0, | 109.4, 0 | 33 | 9.0, | 119.8, 0 | 34 | 9.0, | 126.6, 0 | 35 | 9.0, | 129.6, 0 | 36 | 9.0, | 128.6, 0 | | SOURC | E ID: | 4 | | | | | | | | | | | | | | | | | IFV | BH | BW WAK | | 1 | 9.0, | 129.5, 0 | 2 | 9.0, | 126.6, 0 | 3 | 9.0, | 119.7, 0 | 4 | 9.0, | 109.3, 0 | 5 | 9.0, | 95.5, 0 | 6 | 9.0, | 78.8, 0 | | 7 | 6.7, | 11.6, 0 | 8 | 6.7, | 11.6, 0 | 9 | 6.7, | 38.8, 0 | 10 | 9.0, | 40.8, 0 | 11 | 9.0, | 60.0, 0 | 12 | 9.0, | 79.0, 0 | | 13 | 9.0, | 95.7, 0 | 14 | 9.0, | 109.4, 0 | 15 | 9.0, | 119.8, 0 | 16 | 9.0, | 126.6, 0 | 17 | 9.0, | 129.6, 0 | 18 | 13.3, | 47.6, 0 | | 19 | 13.3, | 50.0, 0 | 20 | 13.3, | 52.8, 0 | 21 | 13.3, | 54.0, 0 | 22 | 13.3, | 53.5, 0 | 23 | 9.0, | 95.5, 0 | 24 | 9.0, | 78.8, 0 | | 25 | 6.7, | 11.6, 0 | 26 | 6.7, | 11.6, 0 | 27 | 6.7, | 38.8, 0 | 28 | 9.0, | 40.8, 0 | 29 | 9.0, | 60.0, 0 | 30 | 9.0, | 79.0, 0 | | 31 | 9.0, | 95.7, 0 | 32 | 9.0, | 109.4, 0 | 33 | 9.0, | 119.8, 0 | 34 | 9.0, | 126.6, 0 | 35 | 9.0, | 129.6, 0 | 36 | 9.0, | 128.6, 0 | | *** | ISCST3 | - VERSION | 02035 | *** | *** Easts | hore | Energy | LLC | | | | | | * | ** | 01 | /25/07 | | | | | | | *** | | | | | | | | | * | * * | 16 | :23:53 | | * * MOD | ELOPTs | : | | | | | | _ | | | | | | | | PA | .GE 6 | GRDRIS CONC ### *** DIRECTION SPECIFIC BUILDING DIMENSIONS *** | SOURCE ID: 5 IFV BH BW WAK 1 9.0, 129.5, 0 7 6.7, 11.6, 0 13 9.0, 95.7, 0 19 13.3, 50.0, 0 25 6.7, 11.6, 0 31 9.0, 95.7, 0 | 2 9.0,
8 6.7,
14 9.0,
20 13.3,
26 6.7, | BW WAK
126.6, 0
7.4, 0
109.4, 0
52.8, 0
7.4, 0
109.4, 0 | 3
9
15
21
27 | BH BW WAK
9.0, 119.7, 0
6.7, 38.8, 0
9.0, 119.8, 0
13.3, 54.0, 0
6.7, 38.8, 0
9.0, 119.8, 0 | 1FV
4
10
16
22
28
34 | 9.0,
9.0,
13.3,
9.0, | BW WAK
109.3, 0
40.8, 0
126.6, 0
53.5, 0
40.8, 0
126.6, 0 | IFV
5
11
17
23
29
35 | 9.0,
13.3,
9.0,
9.0, | BW WAK
95.5, 0
60.0, 0
50.2, 0
95.5, 0
60.0, 0
129.6, 0 | 1FV
6
12
18
24
30
36 | BH BW WAK 9.0, 78.8, 0 9.0, 79.0, 0 13.3, 47.6, 0 9.0, 78.8, 0 9.0, 79.0, 0 9.0, 128.6, 0 | |---|--|---|--------------------------|---|--|-------------------------------|---|--|-------------------------------|---|--|---| | SOURCE ID: 6 IFV BH BW WAK 1 9.0, 129.5, 0 | | BW WAK
126.6, 0 | IFV
3 | BH BW WAK
9.0, 119.7, 0 | IFV
4 | BH
9.0, | BW WAK
109.3, 0 | IFV
5 | BH
9.0, | BW WAK
95.5, 0 | IFV
6 | BH BW WAK
9.0, 78.8, 0 | | 7 9.0, 59.7, 0
13 9.0, 95.7, 0 | | 7.4, 0
109.4, 0 | 9
15 | 6.7, 38.8, 0
9.0, 119.8, 0 | 10
16 | | 40.8, 0
126.6, 0 | 11
17 | | 60.0, 0
50.2, 0 | 12
18 | 9.0, 79.0, 0
13.3, 47.6, 0 | | 19 13.3, 50.0, 0 | 20 13.3, | 52.8, 0 | 21 | 13.3, 54.0, 0 | 22 | 13.3, | 53.5, 0 | 23 | 9.0, | 95.5, 0 | 24 | 9.0, 78.8, 0 | | 25 9.0, 59.7, 0
31 9.0, 95.7, 0 | | 7.4, 0
109.4, 0 | 27
33 | 6.7, 38.8, 0
9.0, 119.8, 0 | 28
34 | | 40.8, 0
126.6, 0 | 29
35 | | 60.0, 0
129.6, 0 | 30
36 | 9.0, 79.0, 0
9.0, 128.6, 0 | | SOURCE ID: 7 | | | | | | | | | | | | | | IFV BH BW WAK
1 9.0, 129.5, 0 | | BW WAK
126.6, 0 | IFV
3 | BH BW WAK
9.0, 119.7, 0 | IFV
4 | BH | BW WAK
109.3, 0 | IFV
5 | BH | BW WAK
95.5, 0 | IFV
6 | BH BW WAK
9.0, 78.8, 0 | | 7 9.0, 129.5, 0 | | 7.4, 0 | 9 | | 10 | | 40.8, 0 | 11 | | 60.0, 0 | 12 | 9.0, 78.8, 0 | | 13 9.0, 95.7, 0 | | 109.4, 0 | 15 | 9.0, 119.8, 0 | 16 | | 54.1, 0 | | | 50.2, 0 | 18 | 13.3, 47.6, 0 | | 19 13.3, 50.0, 0
25 9.0, 59.7, 0 | | 52.8, 0
7.4, 0 | | 13.3, 54.0, 0
6.7, 38.8, 0 | 22
28 | | 109.3, 0 40.8, 0 | 23
29 | | 95.5, 0
60.0, 0 | 24
30 | 9.0, 78.8, 0
9.0, 79.0, 0 | | 31 9.0, 95.7, 0 | | 109.4, 0 | | 9.0, 119.8, 0 | 34 | | 126.6, 0 | 35 | | 129.6, 0 | | 9.0, 128.6, 0 | | SOURCE ID: 14 | | | | | | | | | | | | | | IFV BH BW WAK | | BW WAK | | BH BW WAK | | BH | BW WAK | | BH | BW WAK | | BH BW WAK | | 1 9.0, 129.5, 0
7 9.0, 59.7, 0 | | 126.6, 0
38.8, 0 | 3
9 | 9.0, 119.7, 0
6.7, 38.8, 0 | 4
10 | | 109.3, 0 | 5
11 | | 95.5, 0
60.0, 0 | 6
12 | 9.0, 78.8, 0
9.0, 79.0, 0 | | 13 13.3, 55.6, 0 | | 56.8, 0 | | 13.3, 56.3, 0 | 16 | | 54.1, 0 | | | 50.2, 0 | | 13.3, 47.6, 0 | | 19 13.6, 106.0, 0 | | 110.3, 0 | | 13.6, 111.2, 0 | 22 | | 108.8, 0 | | | 103.1, 0 | | 13.6, 94.2, 0 | | 25 13.6, 82.5, 0
31 9.0, 95.7, 0 | | 38.8, 0
109.4, 0 | | 6.7, 38.8, 0
9.0,
119.8, 0 | 28
34 | | 12.0, 0
126.6, 0 | 29
35 | | 60.0, 0
129.6, 0 | 30
36 | 9.0, 79.0, 0
9.0, 128.6, 0 | | 31 3.0, 33.7, 0 | 32 2.0, | 100.1, 0 | 55 | 5.0, 115.0, 0 | 31 | J.U, | 120.0, 0 | 33 | J. 0, | 127.0, 0 | 30 | 5.0, 120.0, 0 | | *** ISCST3 - VERSION | 02035 *** | *** Easts
*** | hore | Energy LLC | | | | | | ** | | 01/25/07
16:23:53 | | **MODELOPTs: | 11003M E1 F | | | CDDD I C | | | | | | | | PAGE 7 | GRDRIS URBAN ELEV CONC ### *** DIRECTION SPECIFIC BUILDING DIMENSIONS *** | 1FV
1
7
13
19
25 | 13.6,
13.3,
13.6,
13.6, | BW WAK
129.5, 0
82.5, 0
55.6, 0
106.0, 0
82.5, 0
95.7, 0 | 2
8
14
20
26 | 9.0,
13.3,
13.6,
9.0, | BW WAK
126.6, 0
38.8, 0
56.8, 0
110.3, 0
38.8, 0
109.4, 0 | IFV
3
9
15
21
27
33 | 6.7,
13.3,
13.6,
6.7, | BW WAK
119.7, 0
38.8, 0
56.3, 0
111.2, 0
38.8, 0
119.8, 0 | IFV
4
10
16
22
28
34 | 6.7,
13.3,
13.6,
6.7, | BW WAK
109.3, 0
12.0, 0
54.1, 0
108.8, 0
12.0, 0
126.6, 0 | IFV
5
11
17
23
29
35 | 13.3,
13.6,
6.7, | BW WAK
95.5, 0
20.3, 0
50.2, 0
103.1, 0
9.2, 0
129.6, 0 | IFV
6
12
18
24
30
36 | 9.0,
9.0,
13.6,
9.0, | BW WAK
78.8, 0
79.0, 0
128.6, 0
94.2, 0
79.0, 0
128.6, 0 | |---------------------------------|----------------------------------|--|--------------------------|--------------------------------|---|---------------------------------------|--------------------------------|---|--|--------------------------------|---|--|---|---|--|-------------------------------|--| | SOURC | 'E ID: 1 | 12 | | | | | | | | | | | | | | | | | IFV | BH | BW WAK | | 1 | | 129.5, 0 | 2 | | 126.6, 0 | 3 | | 119.7, 0 | 4 | | 109.3, 0 | 5 | | 95.5, 0 | 6 | 9.0, | 78.8, 0 | | | | 82.5, 0 | 8 | | 38.8, 0 | 9 | | 38.8, 0 | 10 | | 12.0, 0 | 11 | | 20.3, 0 | 12 | 9.0, | 79.0, 0 | | | | 55.6, 0
106.0, 0 | | | 56.8, 0
110.3, 0 | 15
21 | | 56.3, 0
111.2, 0 | 16
22 | | 54.1, 0
108.8, 0 | 17
23 | | 50.2, 0
103.1, 0 | 18
24 | 13.6,
13.6 | 98.4, 0
94.2, 0 | | | | 82.5, 0 | | | 38.8, 0 | 27 | | 38.8, 0 | 28 | | 12.0, 0 | 29 | | 9.2, 0 | 30 | | 79.0, 0 | | | | 95.7, 0 | | , | 109.4, 0 | 33 | | 119.8, 0 | 34 | | 126.6, 0 | 35 | | 129.6, 0 | 36 | | 128.6, 0 | | 1FV
1
7
13
19
25 | 13.6,
13.3,
13.6,
13.6, | BW WAK
129.5, 0
82.5, 0
55.6, 0
106.0, 0
32.5, 0
95.7, 0 | 2
8
14
20
26 | 9.0,
13.3,
13.6,
9.0, | BW WAK
126.6, 0
38.8, 0
56.8, 0
110.3, 0
38.8, 0
109.4, 0 | IFV
3
9
15
21
27
33 | 6.7,
13.3,
13.6,
6.7, | BW WAK
119.7, 0
38.8, 0
56.3, 0
111.2, 0
38.8, 0
119.8, 0 | IFV
4
10
16
22
28
34 | 6.7,
13.3,
13.6,
6.7, | BW WAK
109.3, 0
12.0, 0
54.1, 0
108.8, 0
12.0, 0
126.6, 0 | 29 | BH
9.0,
6.7,
13.6,
13.6,
6.7,
13.6, | 9.2, 0
93.4, 0
40.8, 0 | 12
18 | 9.0, | 79.0, 0 | | SOURC | E ID: 1 | 1.0 | | | | | | | | | | | | | | | | | IFV | BH | BW WAK | IFV | BH | BW WAK | IFV | BH | BW WAK | IFV | ВН | BW WAK | IFV | BH | BW WAK | IFV | BH | BW WAK | | 1 | | 129.5, 0 | 2 | 9.0, | 126.6, 0 | 3 | | 119.7, 0 | 4 | | 109.3, 0 | 5 | | 103.1, 0 | | 13.6, | | | | | 82.5, 0 | 8 | | 38.8, 0 | 9 | | 38.8, 0 | 10 | | 12.0, 0 | 11 | 6.7, | | | | 52.7, 0 | | | | 55.6, 0 | | | 56.8, 0 | 15 | | 56.3, 0 | 16 | | 85.5, 0 | | 13.6, | | | 13.6, | , | | | | 106.0, 0
32.5, 0 | | | 110.3, 0 | 21 | | 111.2, 0
38.8, 0 | 28 | | 43.1, 0
12.0, 0 | 23
29 | 13.6, | 40.8, 0
9.2, 0 | 30 | | 37.2, 0
11.9, 0 | | | | 95.7, 0 | | , | 109.4, 0 | | | 119.8, 0 | | | 85.5, 0 | | | 93.4, 0 | 36 | | 128.6, 0 | | | · | - VERSION | | · | *** Easts | | · | · | | , | 3212, 0 | | , | ** | | | /25/07 | **MODELOPTs: 16:23:53 PAGE 8 * * * CONC URBAN ELEV GRDRIS (577508.1, 4165818.0, (577527.5, 4165817.5, (577546.8, 4165816.8, 6.4, 6.6, 6.7, 0.0); 0.0); 0.0); ### *** DIRECTION SPECIFIC BUILDING DIMENSIONS *** | SOURCE ID: 9 | | | | | | | | | | | | | | | |--|--|--|--|--------|--|--|--|--|--|-----------------------|---|-----|-------|----------| | SOURCE ID: 9 | | | | | | | | | | | | | | | | IFV BH BW WAK | IFV BH | BW WAK | IFV | BH | BW WAK | | 1 9.0, 129.5, 0 | | , 126.6, 0 | 3 | | 119.7, 0 | 4 | | 109.3, 0 | | | 103.1, 0 | | 13.6, | | | 7 13.6, 82.5, 0 | | , 38.8, 0 | 9 | | 38.8, 0 | 10 | | 12.0, 0 | 11 | 6.7, | | | 13.3, | | | 13 13.3, 55.6, 0 | | , 56.8, 0 | | | 56.3, 0 | | | 85.5, 0 | | | 93.4, 0 | | 13.6, | | | 19 13.6, 106.0, 0 | | , 110.3, 0 | | | 44.2, 0 | | | 43.1, 0 | | | 40.8, 0 | | | 37.2, 0 | | 25 13.6, 32.5, 0 | | , 38.8, 0 | | | 38.8, 0 | 28 | | 12.0, 0 | 29 | | 9.2, 0 | 30 | | 11.9, 0 | | 31 6.7, 14.3, 0 | | , 109.4, 0 | 33 | | 119.8, 0 | | | 85.5, 0 | | | 93.4, 0 | | | 128.6, 0 | SOURCE ID: 8 | | | | | | | | | | | | | | | | IFV BH BW WAK | IFV BH | BW WAK | IFV | BH | BW WAK | | 1 9.0, 129.5, 0 | 2 9.0 | , 126.6, 0 | 3 | 9.0, | 119.7, 0 | 4 | 13.6, | 108.8, 0 | 5 | 13.6, | 103.1, 0 | 6 | 13.6, | 94.2, 0 | | 7 9.0, 59.7, 0 | 8 9.0 | , 38.8, 0 | 9 | 6.7, | 38.8, 0 | 10 | 6.7, | 12.0, 0 | 11 | 6.7, | 9.2, 0 | 12 | 6.7, | 11.9, 0 | | 13 6.7, 14.3, 0 | 14 6.7 | , 16.2, 0 | 15 | 13.6, | 75.0, 0 | 16 | 13.6, | 85.5, 0 | 17 | 13.6, | 93.4, 0 | 18 | 13.6, | 98.4, 0 | | 19 13.6, 106.0, 0 | 20 13.6 | , 110.3, 0 | 21 | 13.6, | 44.2, 0 | 22 | 13.6, | 43.1, 0 | 23 | 13.6, | 40.8, 0 | 24 | 13.6, | 37.2, 0 | | 25 9.0, 59.7, 0 | 26 9.0 | , 38.8, 0 | 27 | 6.7, | 38.8, 0 | 28 | 6.7, | 12.0, 0 | 29 | 6.7, | 9.2, 0 | 30 | 6.7, | 11.9, 0 | | 31 6.7, 14.3, 0 | 32 6.7 | , 16.2, 0 | 33 | 13.6, | 75.0, 0 | 34 | 13.6, | 85.5, 0 | 35 | 13.6, | 93.4, 0 | 36 | 9.0, | 128.6, 0 | *** ISCST3 - VERSION | 02035 *** | *** Easts | shore I | Inergy | LLC | | | | | | | * * | | 25/07 | | | | *** | | | | | | | | | * | * * | | 23:53 | | **MODELOPTs: | | | | | | | | | | | | | PAG | E 9 | | CONC | URBAN EL | ΞV | | GRDRI | 3 | E CARTESIAN | | | | | | | | | | | | | | | | Y-COORD, Z | / 577022 0 416655 | 9 2 | 0 6 | (X-0 | | Y-COORD, Z
(METERS) | ELEV, | ZFLAG |) | 0 1 | , | | | | | | (577932.8, 416652 | | 8.6, | (X-0 | | Y-COORD, Z
(METERS) | ELEV,
2.8, | ZFLAG
4166499 |)
9.8, | 9.1, | | 0.0); | | | | | (577936.3, 416645 | 7.2, | 9.1, | (X-0 | | Y-COORD, Z
(METERS)
(57793
(57793 | ELEV,
2.8,
6.3, | ZFLAG
4166499
4166423 | 9.8,
L.8, | 8.8, | (| 0.0); | | | | | (577936.3, 416645
(577939.9, 416638 | 7.2,
9.8, | 9.1,
8.8, | (X-0 | | Y-COORD, Z
(METERS)
(57793
(57793
(57793 | 2.8,
6.3,
9.9, | ZFLAG
4166499
4166423 | 9.8,
1.8,
L.5, | 8.8, | (|).0);
).0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634 | 7.2,
9.8,
7.2, | 9.1,
8.8,
8.8, | 0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57793 | 2.8,
6.3,
9.9,
2.5, | ZFLAG
4166499
4166423
4166343 | 9.8,
1.8,
1.5,
7.2, | 8.8,
8.8,
8.8, | (
(|).0);
).0);
).0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634 | 7.2,
9.8,
7.2,
7.2, | 9.1,
8.8,
8.8,
8.9, | 0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57798
(57803 | 2.8,
6.3,
9.9,
2.5,
2.2, | ZFLAG
4166499
4166421
4166341
4166341 |)
).8,
l.8,
l.5,
7.2, | 8.8,
8.8,
8.8,
9.1, | (
(
(| 0.0);
0.0);
0.0);
0.0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634
(578071.2, 416634 | 7.2,
9.8,
7.2,
7.2,
7.2, | 9.1,
8.8,
8.8,
8.9,
9.2, | (X-(0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57793
(57798
(57803
(57809 | 2.8,
6.3,
9.9,
2.5,
2.2,
6.1, | ZFLAG
4166499
4166421
4166341
4166341
4166341 | 0.8,
1.8,
1.5,
7.2,
1.2,
3.8, | 8.8,
8.8,
8.8,
9.1,
9.4, | (
(
(| 0.0);
0.0);
0.0);
0.0); | | | | | (
577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634
(578071.2, 416634
(577993.1, 416634 | 7.2,
9.8,
7.2,
7.2,
7.2,
0.0, | 9.1,
8.8,
8.8,
8.9,
9.2,
8.8, | (X-(0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57793
(57798
(57803
(57809
(57796 | 2.8,
6.3,
9.9,
2.5,
2.2,
6.1,
4.8, | ZFLAG 4166499 4166421 4166341 4166341 4166341 | 9.8,
1.8,
1.5,
7.2,
7.2,
3.8, | 8.8,
8.8,
8.8,
9.1,
9.4,
8.8, | (
(
(
(| 0.0);
0.0);
0.0);
0.0);
0.0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634
(578071.2, 416634
(577993.1, 416634
(577943.4, 416638 | 7.2,
9.8,
7.2,
7.2,
7.2,
0.0,
6.2, | 9.1,
8.8,
8.8,
8.9,
9.2,
8.8,
8.8, | (X-0
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57798
(57798
(57809
(57809
(57796 | 2.8,
6.3,
9.9,
2.5,
2.2,
6.1,
4.8, | ZFLAG 4166499 4166423 4166341 4166341 4166341 4166428 | 9.8,
1.8,
1.5,
7.2,
7.2,
3.8, | 8.8,
8.8,
8.8,
9.1,
9.4,
8.8, | (
(
(
(| 0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634
(578071.2, 416634
(577993.1, 416634
(577943.4, 416638
(577939.9, 416647 | 7.2,
9.8,
7.2,
7.2,
7.2,
0.0,
6.2,
8.5, | 9.1,
8.8,
8.8,
8.9,
9.2,
8.8,
8.8,
9.1, | (X-(0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57798
(57798
(57809
(57809
(57794
(57794 | 2.8,
6.3,
9.9,
2.5,
2.2,
6.1,
4.8,
7.0,
9.9, | ZFLAG 416649 416642 416634 416634 416634 416634 416650 | 9.8,
1.8,
1.5,
7.2,
7.2,
3.8,
0.0,
3.8, | 8.8,
8.8,
9.1,
9.4,
8.8,
9.1, | (
(
(
(
(|).0);
).0);
).0);
).0);
).0);
).0);
).0); | | | | | (577936.3, 416645
(577939.9, 416638
(577954.1, 416634
(578003.8, 416634
(578071.2, 416634
(577993.1, 416634
(577943.4, 416638 | 7.2,
9.8,
7.2,
7.2,
7.2,
0.0,
6.2,
8.5,
9.0, | 9.1,
8.8,
8.8,
8.9,
9.2,
8.8,
8.8, | (X-0
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | Y-COORD, Z
(METERS)
(57793
(57793
(57798
(57798
(57809
(57809
(57796 | 2.8,
6.3,
9.9,
2.5,
2.2,
6.1,
4.8,
7.0,
9.9,
9.0, | ZFLAG 4166499 4166421 4166341 4166341 4166342 4166501 | 9.8,
1.8,
1.5,
7.2,
3.8,
3.0,
3.8,
7.0, | 8.8,
8.8,
8.8,
9.1,
9.4,
8.8, | | 0.0);
0.0);
0.0);
0.0);
0.0);
0.0); | | | | (577517.8, 4165817.8, (577537.1, 4165817.0, (577556.5, 4165816.5, 6.4, 6.7, 6.7, 0.0); 0.0); 0.0); ``` (577566.2, 4165816.0, 6.7, 0.0); (577575.9, 4165815.8, 6.9, 0.0); (577585.6, 4165815.5, 7.0, 0.0); (577595.3, 4165815.0, 7.0, 0.0); (577614.7, 4165814.5, 7.2, (577605.0, 4165814.8, 7.0, 0.0); 0.0); (577624.4, 4165814.2, 7.3, 0.0); (577634.0, 4165814.0, 7.3, 0.0); (577643.7, 4165813.5, 7.3, 0.0); (577653.4, 4165813.2, 7.3, 0.0); (577663.1, 4165813.0, (577672.8, 4165812.5, 7.4, 0.0); 7.6, 0.0); (577682.5, 4165812.2, 7.6, 0.0); (577691.6, 4165809.0, 7.6, 0.0); (577700.7, 4165805.5, 7.6, 0.0); (577709.7, 4165802.2, 7.9. 0.0); (577718.8, 4165799.0, 7.9. 0.0); (577726.2, 4165793.5, 7.9. 0.0); (577733.6, 4165788.2, 7.9, 0.0); (577741.0, 4165782.8, 7.9. 0.0); (577748.4, 4165777.5, 7.9, 0.0); (577755.8, 4165772.0, 8.1, 0.0); (577755.9, 4165762.5, 8.2, 0.0); (577756.0, 4165753.2, 8.2. 0.0); (577756.2, 4165743.8, (577756.3, 4165734.5, 8.2. 8.2, 0.0); 0.0); (577756.4, 4165725.0, 8.2, 0.0); (577756.4, 4165718.2, 8.2, 0.0); 577737.1, 4165718.5, (577746.8, 4165718.2, 8.2, 0.0); 8.1, 0.0); (577727.5, 4165718.5, 7.9. 0.0); (577717.8, 4165718.5, 7.9. 0.0); (577708.1, 4165718.8, 7.9, 0.0); (577698.5, 4165718.8, 7.7, 0.0); (577688.8, 4165719.0, 7.6, 0.0); (577679.2, 4165719.0, 7.6, 0.0); (577669.5, 4165719.0, (577659.8, 4165719.2, 7.3, 7.6, 0.0); 0.0); (577650.2, 4165719.2, 7.3. 0.0); (577640.5, 4165719.5, 7.3. 0.0); (577630.9, 4165719.5, 0.0); (577621.2, 4165719.5, 7.0, 0.0); 7.3, (577611.5, 4165719.8, (577601.9, 4165719.8, 7.0. 0.0); 7.0. 0.0); (577592.2, 4165720.0, (577582.6, 4165720.0, 7.0, 0.0); 6.8, 0.0); (577572.9, 4165720.0, (577563.2, 4165720.0, 6.7, 0.0); 6.7, 0.0); (577553.6, 4165720.2, (577543.9, 4165720.2, 6.5, 0.0); 6.4. 0.0); (577524.6, 4165720.5, (577534.3, 4165720.5, 0.0); 6.2, 0.0); 6.4, (577514.9, 4165720.5, 6.1, 0.0); (577505.3, 4165720.8, 6.1, 0.0); (577495.6, 4165720.8, 0.0); (577486.0, 4165721.0, 6.1, 0.0); 6.1, (577476.3, 4165721.0, 6.0, 0.0); (577476.4, 4165730.8, 6.1, 0.0); (577476.6, 4165740.5, 6.1, 0.0); (577476.7, 4165750.5, 6.1, 0.0); (577476.8, 4165760.2, (577477.0, 4165770.0, 6.1, 0.0); 6.1, 0.0); *** *** ISCST3 - VERSION 02035 *** Eastshore Energy LLC 01/25/07 *** 16:23:53 PAGE 10 **MODELOPTs: CONC URBAN ELEV GRDRIS *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZFLAG) (METERS) (577477.1, 4165779.8, 6.1, 0.0); (577477.2, 4165789.5, 6.1, 0.0); (577477.4, 4165799.5, (577477.5, 4165809.2, 6.1, 0.0); 6.3, 0.0); (577320.0, 4165560.0, 5.2, 0.0); (577330.0, 4165560.0, 5.2. 0.0); (577340.0, 4165560.0, 5.2, 0.0); (577350.0, 4165560.0, 5.2, 0.0); (577370.0, 4165560.0, (577360.0, 4165560.0, 5.5, 0.0); 5.5, 0.0); (577380.0, 4165560.0, 5.5, 0.0); (577390.0, 4165560.0, 5.5, 0.0); (577400.0, 4165560.0, (577410.0, 4165560.0, 5.5, 5.5, 0.0); 0.0); (577420.0, 4165560.0, 5.5, 0.0); (577430.0, 4165560.0, 5.8, 0.0); ``` (577450.0, 4165560.0, 5.8, 0.0); (577440.0, 4165560.0, 5.8, 0.0); ``` (577460.0, 4165560.0, 5.8, 0.0); (577470.0, 4165560.0, 5.8, 0.0); (577480.0, 4165560.0, 5.8, 0.0); (577490.0, 4165560.0, 6.1, 0.0); (577510.0, 4165560.0, (577500.0, 4165560.0, 6.1, 0.0); 6.1, 0.0); (577520.0, 4165560.0, 6.1, 0.0); (577530.0, 4165560.0, 6.4, 0.0); (577540.0, 4165560.0, 6.4, 0.0); (577550.0, 4165560.0, 6.4, 0.0); (577570.0, 4165560.0, (577560.0, 4165560.0, 6.7, 0.0); 6.7, 0.0); (577580.0, 4165560.0, 6.7, 0.0); (577590.0, 4165560.0, 7.0, 0.0); (577600.0, 4165560.0, 7.0, 0.0); (577610.0, 4165560.0, 7.3, 0.0); (577620.0, 4165560.0, 7.3. 0.0); (577630.0, 4165560.0, 7.6. 0.0); (577640.0, 4165560.0, 7.6, 0.0); (577650.0, 4165560.0, 7.6. 0.0); (577660.0, 4165560.0, 7.9, 0.0); (577670.0, 4165560.0, 7.9, 0.0); (577680.0, 4165560.0, 8.2. 0.0); (577690.0, 4165560.0, 8.5, 0.0); (577700.0, 4165560.0, (577710.0, 4165560.0, 8.5, 0.0); 8.8, 0.0); (577720.0, 4165560.0, 9.1, 0.0); (577730.0, 4165560.0, 9.1, 0.0); (577740.0, 4165560.0, 9.4, 0.0); (577750.0, 4165560.0, 9.4, 0.0); (577760.0, 4165560.0, 9.4, 0.0); (577770.0, 4165560.0, 9.4. 0.0); (577780.0, 4165560.0, 9.4, 0.0); (577790.0, 4165560.0, 9.1, 0.0); (577800.0, 4165560.0, 9.1, 0.0); (577810.0, 4165560.0, 9.1, 0.0); (577820.0, 4165560.0, (577830.0, 4165560.0, 9.1, 0.0); 9.1, 0.0); (577840.0, 4165560.0, 9.1. 0.0); (577850.0, 4165560.0, 8.8, 0.0); (577860.0, 4165560.0, 0.0); (577870.0, 4165560.0, 8.8, 0.0); 8.8, (577880.0, 4165560.0, (577890.0, 4165560.0, 8.8, 0.0); 8.8, 0.0); (577910.0, 4165560.0, (577900.0, 4165560.0, 8.8, 0.0); 8.8, 0.0); (577320.0, 4165570.0, (577330.0, 4165570.0, 5.2, 0.0); 5.2, 0.0); (577340.0, 4165570.0, (577350.0, 4165570.0, 5.2. 5.2. 0.0); 0.0); (577370.0, 4165570.0, (577360.0, 4165570.0, 5.5, 0.0); 5.5, 0.0); (577380.0, 4165570.0, 5.5, 0.0); (577390.0, 4165570.0, 5.5, 0.0); (577400.0, 4165570.0, 5.5, 0.0); (577410.0, 4165570.0, 5.5, 0.0); (577420.0, 4165570.0, 5.5, 0.0); (577430.0, 4165570.0, 5.8, 0.0); (577440.0, 4165570.0, 5.8, 0.0); (577450.0, 4165570.0, 5.8, 0.0); (577470.0, 4165570.0, (577460.0, 4165570.0, 5.8, 0.0); 5.8, 0.0); (577490.0, 4165570.0, (577480.0, 4165570.0, 5.8, 0.0); 6.1, 0.0); (577500.0, 4165570.0, 6.1, 0.0); (577510.0, 4165570.0, 6.1, 0.0); (577520.0, 4165570.0, (577530.0, 4165570.0, 6.1, 0.0); 6.4. 0.0); (577540.0, 4165570.0, 6.4, 0.0); (577550.0, 4165570.0, 6.4. 0.0); (577560.0, 4165570.0, 0.0); (577570.0, 4165570.0, 6.7, 0.0); 6.7, *** *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC 01/25/07 *** *** 16:23:53 *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC * * * 01/25/07 * * * 16:23:53 **MODELOPTs: PAGE 36 ``` * SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED * LESS THAN 1.0 METER OR 3*ZLB IN DISTANCE, OR WITHIN OPEN PIT SOURCE GRDRIS CONC | SOURCE | RECEPTOR LOCATION | DISTANCE | |--------|-------------------------|----------| | ID | XR (METERS) YR (METERS) | (METERS) | | | | | | 1 | 577546.8 | 4165816.8 | 42.16 | |----|----------|-----------|-------| | 2 | 577556.5 | 4165816.5 | 44.14 | | 3 | 577556.5 | 4165816.5 | 41.42 | | 11 | 577614.7 | 4165814.5 | 35.52 | | 10 | 577624.4 | 4165814.2 | 35.49 | | 9 | 577624.4 | 4165814.2 | 36.95 | | 8 | 577624.4 | 4165814.2 | 39.14 | | 8 | 577634.0 | 4165814.0 | 35.50 | *** CONC URBAN ELEV GRDRIS **MODELOPTs: # *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO) *** *** 01/25/07 16:23:53 PAGE 37 NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE. # *** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC) 1.54, 3.09, 5.14, 8.23, 10.80, ### *** WIND PROFILE EXPONENTS *** | STABILITY | | WINI | SPEED CATEGOR | Y | | | |-----------|------------|------------|---------------|------------|------------|------------| | CATEGORY | 1 | 2 | 3 | 4 | 5 | 6 | | A | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | | В | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | | C | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | | D | .15000E+00 | .15000E+00 | .15000E+00 |
.15000E+00 | .15000E+00 | .15000E+00 | | E | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | | F | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | # *** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER) | | STABILITY | | WINI | SPEED CATEGORY | • | | | | |----------------|---------------|-------------|-----------------|----------------|------------|------------|------------|----------| | | CATEGORY | 1 | 2 | 3 | 4 | 5 | 6 | | | | A | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | | | В | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | | | C | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | | | D | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | | | E | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | | | | F | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | | | *** ISCST3 - ' | VERSION 02035 | *** *** Eas | tshore Energy I | LLC | | | *** | 01/25/07 | | | | *** | | | | | *** | 16:23:53 | | **MODELOPTs: | | | | | | | | PAGE 38 | CONC URBAN ELEV GRDRIS *** THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** FILE: metdata00-04600.asc FORMAT: (4I2,2F9.4,F6.1,I2,2F7.1,f9.4,f10.1,f8.4,i4,f7.2) SURFACE STATION NO.: 1901 UPPER AIR STATION NO.: 1901 NAME: UNKNOWN YEAR: 1990 YEAR: 1990 | | FLOW | SPEED | TEMP | STAB | MIXING H | EIGHT (M) | USTAR | M-O LENGTH | Z-0 | IPCODE | PRATE | |-------------|--------|-------|-------|-------|----------|-----------|--------|------------|--------|--------|---------| | YR MN DY HR | VECTOR | (M/S) | (K) | CLASS | RURAL | URBAN | (M/S) | (M) | (M) | | (mm/HR) | _ | | | 90 01 01 01 | 342.0 | 2.15 | 283.0 | 4 | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 02 | 303.0 | 1.00 | 283.0 | 5 | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 03 | 267.0 | 1.07 | 283.0 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | 90 01 01 04 | 288.0 | 1.00 | 282.8 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | 90 01 01 05 | 296.0 | 1.00 | 282.4 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | 90 01 01 06 | 312.0 | 1.70 | 282.0 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 07 | 326.0 | 2.19 | 281.8 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 08 | 314.0 | 2.59 | 281.5 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 09 | 304.0 | 2.10 | 281.9 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 10 | 303.0 | 2.15 | 282.9 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 11 | 333.0 | 2.32 | 284.1 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 12 | 339.0 | 3.31 | 284.5 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 13 | 345.0 | 2.24 | 284.1 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 14 | 335.0 | 2.82 | 283.5 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 15 | 341.0 | 2.68 | 283.1 | 2 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 16 | 360.0 | 2.01 | 283.4 | 1 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 17 | 64.0 | 1.00 | 282.8 | 2 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 18 | 36.0 | 1.16 | 282.5 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 19 | 106.0 | 1.97 | 282.5 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 20 | 69.0 | 1.00 | 282.5 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | ``` 90 01 01 21 112.0 2.50 281.9 5 600.0 600.0 0.0000 0.0 0.0000 0 0.00 90 01 01 22 131.0 1.83 281.0 4 600.0 600.0 0.0000 0.0 0.0000 0 0.0000 90 01 01 23 151.0 2.46 280.8 5 600.0 600.0 0.0000 0.0 0.0000 0 0.0000 90 01 01 24 227.0 1.74 280.0 5 600.0 600.0 0.0000 0.0 0.0000 0 0.00 ``` *** NOTES: STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F. FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING. *** 01/25/07 *** 16:23:53 PAGE 39 **MODELOPTs: CONC URBAN ELEV GRDRIS > *** THE PERIOD (43824 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL *** INCLUDING SOURCE(S): 1 , 2 , 3 , 4 , 5 , 6 , 7 , 14 , 13 , 12 , 11 , 10 , 9 , 8 *** DISCRETE CARTESIAN RECEPTOR POINTS *** | X-COORD (M) | Y-COORD (M) | CONC | X-COORD (M) | Y-COORD (M) | CONC | | | |-------------|-------------|----------|-------------|-------------|----------|-----|--| | 577932.75 | 4166528.25 | 0.94439 | | 4166499.75 | 0.95934 | | | | 577936.31 | 4166457.25 | 0.96764 | 577936.31 | 4166421.75 | 0.96896 | | | | 577939.88 | 4166389.75 | 0.98131 | 577939.88 | 4166361.50 | 0.99282 | | | | 577954.06 | 4166347.25 | 1.01517 | 577982.50 | 4166347.25 | 1.04895 | | | | 578003.81 | 4166347.25 | 1.07831 | 578032.19 | 4166347.25 | 1.11979 | | | | 578071.25 | 4166347.25 | 1.17072 | 578096.12 | 4166343.75 | 1.20852 | RES | | | 577993.12 | 4166340.00 | 1.06857 | 577964.75 | 4166340.00 | 1.03255 | | | | 577943.44 | 4166386.25 | 0.98542 | 577947.00 | 4166428.75 | 0.97283 | | | | 577939.88 | 4166478.50 | 0.96446 | 577939.88 | 4166507.00 | 0.95932 | | | | 577477.62 | 4165819.00 | 0.27644 | 577479.00 | 4165819.00 | 0.27909 | | | | 577488.69 | 4165818.75 | 0.26830 | 577498.38 | 4165818.50 | 0.25398 | | | | 577508.12 | 4165818.00 | 0.23165 | 577517.81 | 4165817.75 | 0.20877 | | | | 577527.50 | 4165817.50 | 0.19198 | 577537.12 | 4165817.00 | 0.16919 | | | | 577546.81 | 4165816.75 | 0.14840 | 577556.50 | 4165816.50 | 0.29266 | | | | 577566.19 | 4165816.00 | 0.74879 | 577575.88 | 4165815.75 | 1.16734 | | | | 577585.62 | 4165815.50 | 1.62954 | 577595.31 | 4165815.00 | 2.10915 | | | | 577605.00 | 4165814.75 | 2.61001 | 577614.69 | 4165814.50 | 3.20734 | | | | 577624.38 | 4165814.25 | 3.72513 | 577634.00 | 4165814.00 | 4.24979 | | | | 577643.69 | 4165813.50 | 4.81190 | 577653.38 | 4165813.25 | 5.34709 | | | | 577663.12 | 4165813.00 | 5.95221 | 577672.81 | 4165812.50 | 6.67574 | | | | 577682.50 | 4165812.25 | 7.27685 | 577691.62 | 4165809.00 | 8.41763 | | | | 577700.69 | 4165805.50 | 9.74519 | 577709.69 | 4165802.25 | 11.40602 | | | | 577718.81 | 4165799.00 | 12.95955 | 577726.19 | 4165793.50 | 15.14369 | | | | 577733.62 | 4165788.25 | 17.33235 | 577741.00 | 4165782.75 | 19.55715 | | | | 577748.38 | 4165777.50 | 21.53445 | 577755.81 | 4165772.00 | 23.62697 | | | | 577755.88 | 4165762.50 | 26.83762 | 577756.00 | 4165753.25 | 29.40611 | | | | 577756.19 | 4165743.75 | 31.35772 | | 577756.31 | 4165734.50 | 32.45525 | |-----------|------------|----------|-----|-----------|------------|----------| | 577756.38 | 4165725.00 | 32.73498 | IND | 577756.38 | 4165718.25 | 32.45528 | | 577746.81 | 4165718.25 | 32.54340 | | 577737.12 | 4165718.50 | 32.15517 | | 577727.50 | 4165718.50 | 31.16064 | | 577717.81 | 4165718.50 | 30.11556 | | 577708.12 | 4165718.75 | 28.68698 | | 577698.50 | 4165718.75 | 26.47328 | | 577688.81 | 4165719.00 | 24.23501 | | 577679.19 | 4165719.00 | 22.05082 | | 577669.50 | 4165719.00 | 19.88355 | | 577659.81 | 4165719.25 | 17.40756 | | 577650.19 | 4165719.25 | 15.47644 | | 577640.50 | 4165719.50 | 13.57661 | | 577630.88 | 4165719.50 | 11.56915 | | 577621.19 | 4165719.50 | 9.10724 | | 577611.50 | 4165719.75 | 6.96565 | | 577601.88 | 4165719.75 | 4.93029 | | 577592.19 | 4165720.00 | 3.19749 | | 577582.62 | 4165720.00 | 1.83614 | | 577572.88 | 4165720.00 | 0.97824 | | 577563.19 | 4165720.00 | 0.53227 | | 577553.62 | 4165720.25 | 0.32236 | | 577543.88 | 4165720.25 | 0.24714 | | 577534.31 | 4165720.50 | 0.22043 | | 577524.62 | 4165720.50 | 0.20313 | | | | | | | | | *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC **MODELOPTs: CONC URBAN ELEV GRDRIS *** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL *** INCLUDING SOURCE(S): 1 , 2 , 3 , 4 , 5 , 6 , 7 INCLUDING SOURCE(S): 1 , 2 , 3 , 4 , 5 , 6 , 7 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , ### *** DISCRETE CARTESIAN RECEPTOR POINTS *** ** CONC OF NGAS IN MICROGRAMS/M**3 *** 01/25/07 *** 16:23:53 PAGE 969 | | X-COORD (M) | Y-COORD (M) | CONC | (YYMMDDHH) | X-COORD (M) | Y-COORD (M) | CONC | (YYMMDDHH) | |---|-------------|-------------|-----------|------------|-------------|-------------|-----------|------------| | _ | 577932.75 | 4166528.25 | 102.68767 | (93122324) | 577932.75 | 4166499.75 | 100.72300 | (90012424) | | | 577936.31 | 4166457.25 | 94.46078 | (91010908) | 577936.31 | 4166421.75 | 88.01776 | (93030807) | | | 577939.88 | 4166389.75 | 84.01555 | (93011601) | 577939.88 | 4166361.50 | 80.09186 | (93011601) | | | 577954.06 | 4166347.25 | 79.17673 | (94120522) | 577982.50 | 4166347.25 | 82.79347 | (92030401) | | | 578003.81 | 4166347.25 | 85.48978 | (92012322) | 578032.19 | 4166347.25 | 89.67801 | (90031020) | | | 578071.25 | 4166347.25 | 95.24367 | (90010502) | 578096.12 | 4166343.75 | 98.76987 | (91010524) | | | 577993.12 | 4166340.00 | 83.37952 | (92030401) | 577964.75 | 4166340.00 | 79.00276 | (93040624) | | | 577943.44 | 4166386.25 | 84.12881 | (93011601) | 577947.00 | 4166428.75 | 90.01869 | (93030807) | | | 577939.88 | 4166478.50 | 98.20449 | (91010908) | 577939.88 | 4166507.00 | 102.31668 | (90012424) | | | 577477.62 | 4165819.00 | 117.86664 | (93112813) | 577479.00 | 4165819.00 | 117.31935 | (93112813) | | | 577488.69 | 4165818.75 | 107.04486 | (93022617) | 577498.38 | 4165818.50 | 96.68312 | (93022617) | | | 577508.12 | 4165818.00 | 86.65147 | (93112813) | 577517.81 | 4165817.75 | 79.67763 | (93112813) | | | 577527.50 | 4165817.50 | 74.52088 | (93112813) | 577537.12 | 4165817.00 | 71.28780 | (92032012) | | | 577546.81 | 4165816.75 | 66.82955 | (92032012) | 577556.50 | 4165816.50 | 57.39623 | (92032012) | | | 577566.19 | 4165816.00 | 164.20331 | (92062910) | 577575.88 | 4165815.75 | 189.72913 | (90040717) | | | 577585.62 | 4165815.50 | 200.53798 | (93051913) | 577595.31 | 4165815.00 | 199.92354 | (91092513) | | | 577605.00 | 4165814.75 | 198.37993 | (93011015) |
577614.69 | 4165814.50 | 199.40755 | (91042518) | | | 577624.38 | 4165814.25 | 201.40446 | (94042510) | 577634.00 | 4165814.00 | 200.94949 | (94042513) | | | 577643.69 | 4165813.50 | 197.31142 | (91102213) | 577653.38 | 4165813.25 | 192.95833 | (92062817) | ``` 577663.12 4165813.00 191.62750 (92062817) 577672.81 4165812.50 195.79611 (92062817) 577682.50 4165812.25 201.15787 (92062817) 577691.62 4165809.00 212.07544 (94042516) 577700.69 4165805.50 222.59419 (94042516) 577709.69 4165802.25 234.38380 (90051411) 577718.81 4165799.00 238.00526 (90060411) 577726.19 4165793.50 241.03094 (93061011) 577733.62 4165788.25 241.45547 (90061314) IND 577741.00 4165782.75 237.81494 (93040816) 577748.38 4165777.50 231.48122 (93071517) 577755.88 4165772.00 227.03488 (92062815) 577755.88 4165762.50 224.72575 (90041114) 577756.00 4165753.25 209.87608 (90041114) 577756.19 4165743.75 202.71753 (90081815) 577756.31 4165734.50 198.05521 (90083017) 577756.84 4165718.25 193.74527 (90081815) 577756.84 4165718.25 193.74527 (90081815) 577756.81 4165718.25 193.75527 (90081815) 577756.81 4165718.25 193.75527 (90081017) 577756.81 4165718.25 193.75527 (90081017) 577756.81 4165718.25 193.75527 (90081017) 577756.81 4165718.25 193.75527 (90081017) 577756.31 4165718.50 194.84459 (93062315) 5777698.51 4165718.50 195.70416 (92072013) 577708.12 4165718.75 187.11392 (93042016) 577698.50 4165719.00 174.85107 (92032216) 577699.50 4165719.00 174.85107 (92032216) 577659.51 4165719.50 124.04937 (92032216) 577650.19 4165719.25 132.12288 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577650.19 4165719.50 124.04937 (92032216) 577552.88 4165720.00 65.22369 (93110116) 577552.88 4165720.00 65.22369 (93110116) 577552.88 4165720.50 95.94508 (94031212) 577554.62 4165720.50 65.22369 (93110116) 5775534.31 4165720.50 95.94508 (94031212) 577534.31 4165720.50 95.94508 (94031212) 577534.31 4165720.50 95.94508 (94031212) 577534.31 4165720.50 95.94508 (94031212) +++ 01/25/07 *** 16:23:53 PAGE 999 **MODELOPTs: CONC URBAN ELEV GRDRIS *** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: NATGAS *** INCLUDING SOURCE(S): 1 , 2 , 3 , 4 , 5 , 6 , 7 , 12 , 11 , 10 , 9 14 , 13 , 8 *** DISCRETE CARTESIAN RECEPTOR POINTS *** ** CONC OF NGAS IN MICROGRAMS/M**3 X-COORD (M) Y-COORD (M) CONC (YYMMDDHH) X-COORD (M) Y-COORD (M) CONC (YYMMDDHH) 577932.75 4166528.25 102.68767 (93122324) RES 577932.75 4166499.75 100.72300 (90012424) 577936.31 4166457.25 94.46078 (91010908) 577936.31 4166421.75 88.01776 (93030807) 577939.88 4166389.75 84.01555 (93011601) 577939.88 4166347.25 80.09186 (93011601) 578032.19 4166347.25 79.17673 (94120522) 577982.50 4166347.25 82.79347 (92030401) 578071.25 4166347.25 95.24367 (90010502) 578032.19 4166347.25 89.67801 (90031020) 577993.12 4166340.00 83.37952 (92030401) 577964.75 4166340.00 79.00276 (93040624) 577943.44 4166386.25 84.12881 (93011601) 577947.00 4166428.75 90.01869 (93030807) 577477.62 4165819.00 117.86664 (93112813) 577479.00 4165819.00 117.31935 (93112813) 577508.12 4165818.50 86.65147 (93112813) 577517.81< ``` | | 577566.19 | 4165816.00 | 164.20331 | (92062910) | 577575.8 | 8 4165815.75 | 189.72913 | (900407 | 17) | |--------|--------------|----------------|------------|----------------|----------|---------------|-----------|---------|----------| | | 577585.62 | 4165815.50 | 200.53798 | (93051913) | 577595.3 | 4165815.00 | 199.92354 | (910925 | 13) | | | 577605.00 | 4165814.75 | 198.37993 | (93011015) | 577614.6 | 9 4165814.50 | 199.40755 | (910425 | 18) | | | 577624.38 | 4165814.25 | 201.40446 | (94042510) | 577634.0 | 0 4165814.00 | 200.94949 | (940425 | 13) | | | 577643.69 | 4165813.50 | 197.31142 | (91102213) | 577653.3 | 8 4165813.25 | 192.95833 | (920628 | 17) | | | 577663.12 | 4165813.00 | 191.62750 | (92062817) | 577672.8 | 1 4165812.50 | 195.79611 | (920628 | 17) | | | 577682.50 | 4165812.25 | 201.15787 | (92062817) | 577691.6 | 4165809.00 | 212.07544 | (940425 | 16) | | | 577700.69 | 4165805.50 | 222.59419 | (94042516) | 577709.6 | 9 4165802.25 | 234.38380 | (900514 | :11) | | | 577718.81 | 4165799.00 | 238.00526 | (90060411) | 577726.1 | .9 4165793.50 | 241.03094 | (930610 | 11) | | | 577733.62 | 4165788.25 | 241.45547 | (90061314) | 577741.0 | 0 4165782.75 | 237.81494 | (930408 | 16) | | | 577748.38 | 4165777.50 | 231.48122 | (93071517) | 577755.8 | 1 4165772.00 | 227.03488 | (920628 | 15) | | | 577755.88 | 4165762.50 | 224.72575 | (90041114) | 577756.0 | 0 4165753.25 | 209.87608 | (900411 | .14) | | | 577756.19 | 4165743.75 | 202.71753 | (90081815) | 577756.3 | 1 4165734.50 | 198.05521 | (900830 | 17) | | | 577756.38 | 4165725.00 | 193.46408 | (90050214) | 577756.3 | 8 4165718.25 | 189.58389 | (900920 | 15) | | | 577746.81 | 4165718.25 | 193.71527 | (93081617) | 577737.1 | .2 4165718.50 | 195.70416 | (920720 | 13) | | | 577727.50 | 4165718.50 | 194.84459 | (93062315) | 577717.8 | 1 4165718.50 | 192.26039 | (930623 | 15) | | | 577708.12 | 4165718.75 | 187.11392 | (93042016) | 577698.5 | 0 4165718.75 | 175.31422 | (930420 | 16) | | | 577688.81 | 4165719.00 | 174.85107 | (92032216) | 577679.1 | .9 4165719.00 | 170.07977 | (920322 | 16) | | | 577669.50 | 4165719.00 | 159.48694 | (92032216) | 577659.8 | 4165719.25 | 143.37132 | (920322 | 16) | | | 577650.19 | 4165719.25 | 132.12288 | (92032216) | 577640.5 | 0 4165719.50 | 124.04937 | (920322 | 16) | | | 577630.88 | 4165719.50 | 119.72742 | (92032216) | 577621.1 | .9 4165719.50 | 114.20641 | (920322 | 16) | | | 577611.50 | 4165719.75 | 107.53555 | (92032216) | 577601.8 | 88 4165719.75 | 93.96880 | (920322 | 16) | | | 577592.19 | 4165720.00 | 75.07181 | (93110116) | 577582.6 | 4165720.00 | 65.22369 | (931101 | .16) | | | 577572.88 | 4165720.00 | 61.29892 | (92020312) | 577563.1 | .9 4165720.00 | 67.91652 | (940312 | 12) | | | 577553.62 | 4165720.25 | 80.37663 | (94031212) | 577543.8 | 88 4165720.25 | 89.30459 | (940312 | 12) | | | 577534.31 | 4165720.50 | 95.94508 | (94031212) | 577524.6 | 4165720.50 | 101.36022 | (940312 | 12) | | *** I | SCST3 - VERS | SION 02035 *** | *** Eastsh | ore Energy LLC | | | ** | * | 01/25/07 | | | | | *** | | | | ** | * | 16:23:53 | | **MODE | LOPTs: | | | | | | | | PAGE1899 | | | | | | | | | | | | ** CONC OF NGAS IN MICROGRAMS/M**3 | GROUP I | ID | AVERAGE CONC | REC | EPTOR (XR, YR, | ZELEV, ZFL | AG) OF TYPE | NETWORK
GRID-ID | |---------|-----------------------|---------------|------------|----------------|------------|-------------|--------------------| | | | | | | | | | | ALL | 1ST HIGHEST VALUE IS | 32.73498 AT (| 577756.38, | 4165725.00, | 8.20, | 0.00) DC | NA | | | 2ND HIGHEST VALUE IS | 32.54340 AT (| 577746.81, | 4165718.25, | 8.20, | 0.00) DC | NA | | | 3RD HIGHEST VALUE IS | 32.49900 AT (| 577760.00, | 4165730.00, | 8.20, | 0.00) DC | NA | | | 4TH HIGHEST VALUE IS | 32.45528 AT (| 577756.38, | 4165718.25, | 8.20, | 0.00) DC | NA | | | 5TH HIGHEST VALUE IS | 32.45525 AT (| 577756.31, | 4165734.50, | 8.20, | 0.00) DC | NA | | | 6TH HIGHEST VALUE IS | 32.44508 AT (| 577760.00, | 4165720.00, | 8.20, | 0.00) DC | NA | | | 7TH HIGHEST VALUE IS | 32.15517 AT (| 577737.12, | 4165718.50, | 8.10, | 0.00) DC | NA | | | 8TH HIGHEST VALUE IS | 31.96341 AT (| 577770.00, | 4165720.00, | 8.20, | 0.00) DC | NA | | | 9TH HIGHEST VALUE IS | 31.83233 AT (| 577770.00, | 4165730.00, | 8.20, | 0.00) DC | NA | | | 10TH HIGHEST VALUE IS | 31.71522 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) DC | NA | GRDRIS CONC | NATGAS | 1ST HIGHEST VALUE IS | 32.73498 AT (577756.38, | 4165725.00, | 8.20, | 0.00) | DC | NA | | |---------|--------------------------|--------------------------|-------------|-------|-------|----|-----|----------| | | 2ND HIGHEST VALUE IS | 32.54340 AT (577746.81, | 4165718.25, | 8.20, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 32.49900 AT (577760.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 32.45528 AT (577756.38, | 4165718.25, | 8.20, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 32.45525 AT (577756.31, | 4165734.50, | 8.20, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 32.44508 AT (577760.00, | 4165720.00, | 8.20, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 32.15517 AT (577737.12, | 4165718.50, | 8.10, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 31.96341 AT (577770.00, | 4165720.00, | 8.20, | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | 31.83233 AT (577770.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | 31.71522 AT (577780.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | | | | | | | | | | | S1 | 1ST HIGHEST VALUE IS | 2.59622 AT (577669.50, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 2ND HIGHEST VALUE IS | 2.59355 AT (577679.19, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 2.56826 AT (577688.81, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 2.53584 AT (577698.50, | 4165718.75, | 7.70, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 2.52533 AT (577659.81, | 4165719.25, | 7.30, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 2.50251 AT (577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 2.48063 AT (577680.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 2.47749 AT (577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | 2.47227 AT (577690.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | 2.46340 AT (577670.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | | | | | | | | | | *** IS | CST3 - VERSION 02035 *** | *** Eastshore Energy LLC | | | | | *** | 01/25/07 | | | | *** | | | | | *** | 16:23:53 | | **MODEL | OPTs: | | | | | | | PAGE1900 | ** CONC OF NGAS IN
MICROGRAMS/M**3 | GROUP I | ID AVER | RAGE CONC | RECEPTOR (XR, YR, | ZELEV, ZFLAG) | OF TYPE | NETWORK GRID-ID | |---------|-----------------------|---------------------|-------------------|---------------|----------|-----------------| | S2 | 1ST HIGHEST VALUE IS | 2.59826 AT (577679 | 19, 4165719.00, | 7.60, | 0.00) DC | NA | | | 2ND HIGHEST VALUE IS | 2.58542 AT (577669 | 50, 4165719.00, | 7.60, | 0.00) DC | NA | | | 3RD HIGHEST VALUE IS | 2.58480 AT (577688 | 81, 4165719.00, | 7.60, | 0.00) DC | NA | | | 4TH HIGHEST VALUE IS | 2.56158 AT (577698 | 50, 4165718.75, | 7.70, | 0.00) DC | NA | | | 5TH HIGHEST VALUE IS | 2.53572 AT (577708 | 12, 4165718.75, | 7.90, | 0.00) DC | NA | | | 6TH HIGHEST VALUE IS | 2.49618 AT (577700 | 00, 4165710.00, | 7.90, | 0.00) DC | NA | | | 7TH HIGHEST VALUE IS | 2.49363 AT (577659 | 81, 4165719.25, | 7.30, | 0.00) DC | NA | | | 8TH HIGHEST VALUE IS | 2.47958 AT (577690 | 00, 4165710.00, | 7.60, | 0.00) DC | NA | | | 9TH HIGHEST VALUE IS | 2.47495 AT (577680 | 00, 4165710.00, | 7.60, | 0.00) DC | NA | | | 10TH HIGHEST VALUE IS | 2.47270 AT (577717 | 81, 4165718.50, | 7.90, | 0.00) DC | NA | | S3 | 1ST HIGHEST VALUE IS | 2.56722 AT (577688 | · | | 0.00) DC | NA | | | 2ND HIGHEST VALUE IS | 2.56465 AT (577679 | . , | 7.60, | 0.00) DC | NA | | | 3RD HIGHEST VALUE IS | 2.55698 AT (577698 | 50, 4165718.75, | 7.70, | 0.00) DC | NA | GRDRIS CONC ``` 2.54187 AT (577708.12, 4165718.75, 4TH HIGHEST VALUE IS 7.90, 0.00) DC 2.53180 AT (577669.50, 4165719.00, 5TH HIGHEST VALUE IS 7.60, 0.00) DC NA 6TH HIGHEST VALUE IS 2.48614 AT (577717.81, 4165718.50, 7.90, 0.00) DC NA 7TH HIGHEST VALUE IS 2.48580 AT (577700.00, 4165710.00, 7.90, 0.00) DC 2.45819 AT (577710.00, 4165710.00, 8TH HIGHEST VALUE IS 7.90, 0.00) DC NA 2.45457 AT (577690.00, 4165710.00, 9TH HIGHEST VALUE IS 7.60, 0.00) DC NA 10TH HIGHEST VALUE IS 2.43329 AT (577680.00, 4165710.00, 7.60, 0.00) DC NA S4 1ST HIGHEST VALUE IS 2.45522 AT (577708.12, 4165718.75, 7.90, 0.00) DC 2.45372 AT (577698.50, 4165718.75, 2ND HIGHEST VALUE IS 7.70, 0.00) DC NA 2.44248 AT (577688.81, 4165719.00, 3RD HIGHEST VALUE IS 7.60, 0.00) DC 2.41458 AT (577679.19, 4165719.00, 0.00) DC 4TH HIGHEST VALUE IS 7.60, NA 5TH HIGHEST VALUE IS 2.41201 AT (577717.81, 4165718.50, 7.90, 0.00) DC 6TH HIGHEST VALUE IS 2.40722 AT (577700.00, 4165710.00, 7.90, 0.00) DC NA 2.39669 AT (577710.00, 4165710.00, 7TH HIGHEST VALUE IS 7.90, 0.00) DC 8TH HIGHEST VALUE IS 2.36667 AT (577720.00, 4165710.00, 7.90, 0.00) DC NA 9TH HIGHEST VALUE IS 2.35758 AT (577727.50, 4165718.50, 7.90, 0.00) DC NA 10TH HIGHEST VALUE IS 2.35184 AT (577690.00, 4165710.00, 7.60, 0.00) DC *** ISCST3 - VERSION 02035 *** *** *** Eastshore Energy LLC 01/25/07 *** 16:23:53 **MODELOPTs: PAGE1901 ``` ** CONC OF NGAS IN MICROGRAMS/M**3 GRDRIS CONC | | | | | | | NETWORK | |-------|-----------------------|------------------|--------------------|---------------------|----------|---------| | GROUP | ID AVE | RAGE CONC | RECEPTOR (XR | , YR, ZELEV, ZFLAG) | OF TYPE | GRID-ID | | | | | | | | | | S5 | 1ST HIGHEST VALUE IS | 2.47205 AT (573 | 7708.12, 4165718.7 | 5, 7.90, | 0.00) DC | NA | | | 2ND HIGHEST VALUE IS | 2.45771 AT (577 | 7698.50, 4165718.7 | 5, 7.70, | 0.00) DC | NA | | | 3RD HIGHEST VALUE IS | 2.43725 AT (577 | 7717.81, 4165718.5 | 0, 7.90, | 0.00) DC | NA | | | 4TH HIGHEST VALUE IS | 2.43091 AT (577 | 7688.81, 4165719.0 | 0, 7.60, | 0.00) DC | NA | | | 5TH HIGHEST VALUE IS | 2.40512 AT (577 | 7710.00, 4165710.0 | 0, 7.90, | 0.00) DC | NA | | | 6TH HIGHEST VALUE IS | 2.40280 AT (577 | 7700.00, 4165710.0 | 0, 7.90, | 0.00) DC | NA | | | 7TH HIGHEST VALUE IS | 2.38903 AT (577 | 7727.50, 4165718.5 | 0, 7.90, | 0.00) DC | NA | | | 8TH HIGHEST VALUE IS | 2.38490 AT (577 | 7720.00, 4165710.0 | 0, 7.90, | 0.00) DC | NA | | | 9TH HIGHEST VALUE IS | 2.38368 AT (577 | 7679.19, 4165719.0 | 0, 7.60, | 0.00) DC | NA | | | 10TH HIGHEST VALUE IS | 2.35158 AT (577 | 7737.12, 4165718.5 | 0, 8.10, | 0.00) DC | NA | | | | | | | | | | S6 | 1ST HIGHEST VALUE IS | 2.48278 AT (577 | 7708.12, 4165718.7 | 5, 7.90, | 0.00) DC | NA | | | 2ND HIGHEST VALUE IS | 2.45803 AT (577 | 7717.81, 4165718.5 | 0, 7.90, | 0.00) DC | NA | | | 3RD HIGHEST VALUE IS | 2.45371 AT (577 | 7698.50, 4165718.7 | 5, 7.70, | 0.00) DC | NA | | | 4TH HIGHEST VALUE IS | 2.41732 AT (577 | 7727.50, 4165718.5 | 0, 7.90, | 0.00) DC | NA | | | 5TH HIGHEST VALUE IS | 2.40909 AT (57 | 7688.81, 4165719.0 | 0, 7.60, | 0.00) DC | NA | | | 6TH HIGHEST VALUE IS | 2.40707 AT (577 | 7710.00, 4165710.0 | 0, 7.90, | 0.00) DC | NA | | | 7TH HIGHEST VALUE IS | 2.39823 AT (577 | 7720.00, 4165710.0 | 0, 7.90, | 0.00) DC | NA | | 8TH HIGHEST VALUE IS
9TH HIGHEST VALUE IS
10TH HIGHEST VALUE IS | 2.39002 AT (577700.00,
2.38614 AT (577737.12,
2.36948 AT (577730.00, | 4165718.50, 8.10, | 0.00) DC
0.00) DC
0.00) DC | NA
NA
NA | | |---|---|---|--|----------------------------------|----------------------| | S7 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS | 2.48638 AT (577708.12,
2.47358 AT (577717.81,
2.44200 AT (577727.50,
2.44021 AT (577698.50,
2.41839 AT (577737.12,
2.40586 AT (577720.00,
2.40143 AT (577710.00, | 4165718.50, 7.90,
4165718.50, 7.90,
4165718.75, 7.70,
4165718.50, 8.10,
4165710.00, 7.90, | 0.00) DC
0.00) DC
0.00) DC
0.00) DC
0.00) DC
0.00) DC
0.00) DC | NA
NA
NA
NA
NA
NA | | | 8TH HIGHEST VALUE IS | 2.38725 AT (577730.00, | · | 0.00) DC | NA | | | 9TH HIGHEST VALUE IS
10TH HIGHEST VALUE IS | 2.38324 AT (577740.00,
2.37518 AT (577688.81, | · | 0.00) DC
0.00) DC | NA
NA | | | *** ISCST3 - VERSION 02035 *** | *** Eastshore Energy LLC *** | | | *** | 01/25/07
16:23:53 | | **MODELOPTs: | | | | | PAGE1902 | CONC URBAN ELEV GRDRIS *** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS *** | anoun t | | | | | ALTERACE COMO | DEG | EDEOD (VD | VD 70101 | 75T 76\ 05 | munn | NETWORK | |---------|--------|---------|-------|----|---------------|------------|-------------|------------|------------|------|---------| | GROUP I | .D
 | | | | AVERAGE CONC | REC. | EPTOR (XR, | YR, ZELEV, | ZFLAG) OF | TABE | GRID-ID | | | | | | | | | | | | | | | S8 | 1ST | HIGHEST | VALUE | IS | 2.57619 AT (| 577780.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | | 2ND | HIGHEST | VALUE | IS | 2.54966 AT (| 577790.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | | 3RD | HIGHEST | VALUE | IS | 2.53741 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | 4TH | HIGHEST | VALUE | IS | 2.53386 AT (| 577790.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | 5TH | HIGHEST | VALUE | IS | 2.52029 AT (| 577770.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | бТН | HIGHEST | VALUE | IS | 2.50512 AT (| 577800.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | 7TH | HIGHEST | VALUE | IS | 2.50195 AT (| 577800.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | | 8TH | HIGHEST | VALUE | IS | 2.49436 AT (| 577810.00, | 4165720.00, | 8.80, | 0.00) | DC | NA | | | 9TH | HIGHEST | VALUE | IS | 2.47987 AT (| 577770.00, | 4165740.00, | 8.20, | 0.00) | DC | NA | | | 10TH | HIGHEST | VALUE | IS | 2.47935 AT (| 577790.00, | 4165740.00, | 8.50, | 0.00) | DC | NA | | | | | | | | | | | | | | | S9 | 1ST | HIGHEST | VALUE | IS | 2.56491 AT (| 577780.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | | 2ND | HIGHEST | VALUE | IS | 2.53917 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | 3RD | HIGHEST | VALUE | IS | 2.52847 AT (| 577770.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | 4TH | HIGHEST | VALUE | IS | 2.52595 AT (| 577790.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | | 5TH | HIGHEST | VALUE | IS | 2.52099 AT (| 577790.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | бТН | HIGHEST | VALUE | IS | 2.50472 AT (| 577760.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | 7TH | HIGHEST | VALUE | IS | 2.48983 AT (| 577756.31, | 4165734.50, | 8.20, | 0.00) | DC | NA | | | 8TH | HIGHEST | VALUE | IS | 2.48150 AT (| 577800.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | 9TH | HIGHEST | VALUE | IS | 2.48118 AT (| 577770.00, | 4165720.00, | 8.20, | 0.00) | DC | NA | | | 10TH | HIGHEST | VALUE | IS | 2.47805 AT (| 577770.00, | 4165740.00, | 8.20, | 0.00) | DC | NA | | | | | | | | | | | | | | | 2ND
3RD
4TH
5TH
6TH
7TH
8TH
9TH | HIGHEST
HIGHEST
HIGHEST
HIGHEST
HIGHEST
HIGHEST
HIGHEST | VALUE IS | 2.54653 AT (2.53246 AT (2.52666 AT (2.52230 AT (2.50997 AT (2.50199 AT (2.49741 AT (2.49268 AT (2.48866 AT (| 577780.00,
577780.00,
577770.00,
577760.00,
577756.31,
577790.00,
577770.00,
577776.38, | 4165730.00,
4165730.00,
4165734.50,
4165720.00,
4165730.00,
4165720.00,
4165725.00, | 8.50,
8.50,
8.20,
8.20,
8.20,
8.50,
8.50,
8.20, | 0.00)
0.00)
0.00)
0.00)
0.00)
0.00)
0.00) | DC DC DC DC DC DC DC DC | NA
NA
NA
NA
NA
NA
NA | | |--|---|--|--
--|---|--|---|-------------------------|--|----------------------------------| | *** ISCST3 **MODELOPTs: CONC | - VERSIO | VALUE IS
N 02035 ***
URBAN E | *** | 577760.00, Energy LLC GRDRIS | 4165740.00, | 8.20, | 0.00) | DC | NA

*** | 01/25/07
16:23:53
PAGE1904 | | | | | | | | | | NETWORK | | |---------|--------------------------|--------------------|------------|---------------|---------------|--------|------|---------|-----------| | GROUP I | ID . | AVERAGE CONC | REC | EPTOR (XR, YF | R, ZELEV, ZFL | AG) OF | TYPE | GRID-ID | SA11 | 1ST HIGHEST VALUE IS | | • | , | • | , | DC | NA | | | | 2ND HIGHEST VALUE IS | 32.54340 AT (| 577746.81, | 4165718.25, | 8.20, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 32.49900 AT (| 577760.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 32.45528 AT (| 577756.38, | 4165718.25, | 8.20, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 32.45525 AT (| 577756.31, | 4165734.50, | 8.20, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 32.44508 AT (| 577760.00, | 4165720.00, | 8.20, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 32.15517 AT (| 577737.12, | 4165718.50, | 8.10, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 31.96341 AT (| 577770.00, | 4165720.00, | 8.20, | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | 31.83233 AT (| 577770.00, | 4165730.00, | 8.20, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | 31.71522 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | | | | | | | | | | | | | | 1 | 1ST HIGHEST VALUE IS | 2.59622 AT (| 577669.50, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 2ND HIGHEST VALUE IS | 2.59355 AT (| 577679.19, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 2.56826 AT (| 577688.81, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 2.53584 AT (| 577698.50, | 4165718.75, | 7.70, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 2.52533 AT (| 577659.81, | 4165719.25, | 7.30, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 2.50251 AT (| 577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 2.48063 AT (| 577680.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 2.47749 AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | 2.47227 AT (| 577690.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | | | 4165710.00, | | 0.00) | DC | NA | | | | | ` | • | , | , | , | | | | | *** IS | SCST3 - VERSION 02035 ** | ** *** Eastshore E | nergy LLC | | | | | *** | 01/25/07 | | | | *** | 3. | | | | | *** | 16:23:53 | | **MODEI | OPTs: | | | | | | | | PAGE1905 | | .1000 | -01 10 | | | | | | | | 111301703 | ** CONC OF NGAS IN MICROGRAMS/M**3 | GROUP I | | AVERAGE CONC | RE(| CEPTOR (XR, Y | R, ZELEV, 2
 | ZFLAG) OF | TYPE
 | NETWORK GRID-ID | | |---------|--|--|------------|----------------------------|-----------------|-----------|----------|-----------------|----------| | 2 | 1ST HIGHEST VALUE IS
2ND HIGHEST VALUE IS
3RD HIGHEST VALUE IS | 2.59826 AT (| 577679.19, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 2ND HIGHEST VALUE IS | 2.58542 AT (| 577669.50, | 4165719.00,
4165719.00, | 7.60, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 2.58480 AT (| 577688.81, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 2.56158 AT (| 577698.50, | 4165718.75, | 7.70, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 2.53572 AT (| 577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 2.49618 AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 2.49618 AT (
2.49363 AT (
2.47958 AT (| 577659 81 | 4165719 25 | 7 30 | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 2.47958 AT (| 577690.00, | 4165710.00, | 7.60, | | DC | NA | | | | 9TH HIGHEST VALUE IS | 2.47495 AT (| 577680.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | 2.47270 AT (| | 4165718.50, | | | DC | NA | | | 3 | 1ST HIGHEST VALUE IS | 2.56722 AT (| 577688.81, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 2ND HIGHEST VALUE IS | 2.56465 AT (| 577679.19, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | 2.55698 AT (| 577698.50, | 4165718.75, | 7.70, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | 2.54187 AT (| 577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | | F77660 F0 | 4165710 00 | 7 (0 | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | | 577717.81, | 4165719.00, | 7.90, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 2.48580 AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | | 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | | 577690.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | | 10TH HIGHEST VALUE IS | 2.43329 AT (| 577680.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | 4 | 1ST HIGHEST VALUE IS | 2.45522 AT (| | 4165718.75, | | 0.00) | DC | NA | | | | 2ND HIGHEST VALUE IS | 2.45372 AT (| 577698.50, | 4165718.75, | 7.70, | 0.00) | DC | NA | | | | 3RD HIGHEST VALUE IS | | 577688.81, | 4165719.00, | 7.60, | 0.00) | DC | NA | | | | 4TH HIGHEST VALUE IS | | 311013.13, | 4103/13.00, | 7.00, | 0.00) | DC | NA | | | | 5TH HIGHEST VALUE IS | 2.41201 AT (| 577717.81, | 4165718.50, | 7.90, | 0.00) | DC | NA | | | | 6TH HIGHEST VALUE IS | 2.40722 AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 7TH HIGHEST VALUE IS | 2.39669 AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | | | 8TH HIGHEST VALUE IS | 2.36667 AT (| 577720 00 | 4165710 00 | 7 90 | 0.00) | DC | NA | | | | 9TH HIGHEST VALUE IS | 2.35758 AT (| 577727.50, | 4165718.50, | 7.90, | | DC | NA | | | | 10TH HIGHEST VALUE IS | 2.35184 AT (| 577690.00, | 4165710.00, | 7.60, | 0.00) | DC | NA | | | *** IS | GCST3 - VERSION 02035 * | ** *** Eastshore | Energy LLC | | | | | *** | 01/25/07 | | | | * * * | | | | | | *** | 16:23:53 | | **MODEL | OPTs: | | | | | | | | PAGE1906 | | CONC | URBAN | ELEV | GRDRIS | | | | | | | *** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS *** "" CONC OF NGAS IN MICROGRAMS/M""3 | GROUP | TD | AMEDACE COMC | סדרו | FDT∩D /YD VD | 7FT.FV 7FT. | AC) OF TVE | NETWORK | | |--------|---|-----------------|------------|--------------|-------------|------------|---------|----------| | | ID | | | | | | | | | | | | | | | | | | | 5 | 1ST HIGHEST VALUE IS | | | 4165718.75, | 7.90, | 0.00) DC | NA | | | | 2ND HIGHEST VALUE IS | 3 2.45771 AT (| 577698.50, | 4165718.75, | 7.70, | 0.00) DC | NA | | | | 3RD HIGHEST VALUE IS | 3 2.43725 AT (| 577717.81, | 4165718.50, | 7.90, | 0.00) DC | NA | | | | 4TH HIGHEST VALUE IS | | 577688.81, | 4165719.00, | 7.60, | 0.00) DC | NA | | | | 5TH HIGHEST VALUE IS | 3 2.40512 AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) DC | NA | | | | 6TH HIGHEST VALUE IS | 3 2.40280 AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) DC | NA | | | | 7TH HIGHEST VALUE IS | 2.38903 AT (| 577727.50, | 4165718.50, | 7.90, | 0.00) DC | NA | | | | 8TH HIGHEST VALUE IS | 3 2.38490 AT (| | 4165710.00, | , | 0.00) DO | NA | | | | 9TH HIGHEST VALUE IS | 3 2.38368 AT (| 577679.19, | 4165719.00, | | 0.00) DC | NA | | | | 10TH HIGHEST VALUE IS | 3 2.35158 AT (| 577737.12, | 4165718.50, | 8.10, | 0.00) DC | NA | | | 6 | 1ST HIGHEST VALUE IS | 3 2.48278 AT (| 577708.12. | 4165718.75, | 7.90, | 0.00) DO | NA | | | Ü | 2ND HIGHEST VALUE IS | | 577717.81. | 4165718.50, | 7.90, | 0.00) DO | | | | | 3RD HIGHEST VALUE IS | | | 4165718.75, | | 0.00) DO | | | | | 4TH HIGHEST VALUE IS | , | | 4165718.50, | | 0.00) DO | | | | | 5TH HIGHEST VALUE IS | , | | 4165719.00, | 7.60, | 0.00) DO | | | | | 6TH HIGHEST VALUE IS | , | | 4165710.00, | • | 0.00) DO | | | | | 7TH HIGHEST VALUE IS | • | 577720.00, | 4165710.00, | 7.90, | 0.00) DC | | | | | 8TH HIGHEST VALUE IS | | 577700.00, | 4165710.00, | 7.90, | 0.00) DC | NA | | | | 9TH HIGHEST VALUE IS | 3 2.38614 AT (| | 4165718.50, | | 0.00) DC | NA | | | | 10TH HIGHEST VALUE IS | | | 4165710.00, | 7.90, | 0.00) DO | NA | | | | | | | | | | | | | 7 | 1ST HIGHEST VALUE IS | , | 577708.12, | 4165718.75, | 7.90, | 0.00) DC | | | | | 2ND HIGHEST VALUE IS | , | 577717.81, | 4165718.50, | 7.90, | 0.00) DC | | | | | 3RD HIGHEST VALUE IS | • | | 4165718.50, | | 0.00) DC | NA | | | | 4TH HIGHEST VALUE IS | | | 4165718.75, | • | 0.00) DO | NA | | | | 5TH HIGHEST VALUE IS | , | | 4165718.50, | 8.10, | 0.00) DC | NA | | | | 6TH HIGHEST VALUE IS | , | | 4165710.00, | 7.90, | 0.00) DC | NA | | | | 7TH HIGHEST VALUE IS | , | 577710.00, | 4165710.00, | 7.90, | 0.00) DC | | | | | 8TH HIGHEST VALUE IS | • | 577730.00, | 4165710.00, | 7.90, | 0.00) DC | | | | | 9TH HIGHEST VALUE IS | , | | 4165710.00, | | 0.00) DO | NA | | | | 10TH HIGHEST VALUE IS | 3 2.37518 AT (| 577688.81, | 4165719.00, | 7.60, | 0.00) DC | NA | | | *** T | SCST3 - VERSION 02035 * | ** ** Eastshore | Energy LLC | | | | *** | 01/25/07 | | - | , | *** | | | | | *** | 16:23:53 | | **MODE | LOPTs: | | | | | | | PAGE1907 | | CONC | URBAN | I ELEV | GRDRIS | | | | | | *** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS *** ** CONC OF NGAS IN MICROGRAMS/M**3 NETWORK NETWORK | GROUP | ID | AVERAGE CONC | REC | EPTOR (XR, YR | , ZELEV, ZFI | AG) OF TYPE | GRID-ID | | |----------
---|--|---------------|---|--------------|----------------|----------|----------| | 14 | 1ST HIGHEST VALUE I
2ND HIGHEST VALUE I
3RD HIGHEST VALUE I
4TH HIGHEST VALUE I
5TH HIGHEST VALUE I
6TH HIGHEST VALUE I
7TH HIGHEST VALUE I
8TH HIGHEST VALUE I
9TH HIGHEST VALUE I | C 2 45416 AT (| 577756 38 | 4165725 00 | 8 20 | 0.00) DC | NA | | | | 2ND HIGHEST VALUE I | S 2.13110 AT (| 577746 81 | 4165718 25 | 8 20 | 0.00) DC | NA
NA | | | | 3RD HIGHEST VALUE I | S 2.13301 A1 (| 577756 38 | 4165718 25 | 8 20 | 0.00) DC | NA
NA | | | | 4TH HIGHEST VALUE I | S 2.43384 AT (| 577760.00. | 4165720.00. | 8.20. | 0.00) DC | NA | | | | 5TH HIGHEST VALUE I | S 2 43149 AT (| 577760.00, | 4165730 00 | 8 20 | 0.00) DC | NA | | | | 6TH HIGHEST VALUE I | S 2 42312 AT (| 577756 31 | 4165734 50 | 8 20 | 0.00) DC | NA | | | | 7TH HIGHEST VALUE I | S 2 40321 AT (| 577737 12 | 4165718 50 | 8 10 | 0.00) DC | NA | | | | 7111 HIGHEST VALUE I | 2.10521 AT (| 577770 00 | 4165720 00 | 8 20 | 0.00) DC | NA | | | | 9TH HIGHEST VALUE I | S 2.33070 HI (| 577770.00, | 4165730 00 | 8 20 | 0.00) DC | NA | | | | 10TH HIGHEST VALUE I | S 2.37846 AT (| 577780.00, | 4165720.00. | 8.50. | 0.00) DC | NA | | | | | | | | | | 1411 | | | 13 | 1ST HIGHEST VALUE I | 2.46739 AT (2.45312 AT (2.44592 AT (2.44410 AT (2.43998 AT (| 577756.38, | 4165725.00, | 8.20, | 0.00) DC | NA | | | | 2ND HIGHEST VALUE I | S 2.45312 AT (| 577760.00, | 4165730.00, | 8.20, | 0.00) DC | NA | | | | 3RD HIGHEST VALUE I | S 2.44592 AT (| 577760.00, | 4165720.00, | 8.20, | 0.00) DC | NA | | | | 4TH HIGHEST VALUE I | S 2.44410 AT (| 577756.31, | 4165734.50, | 8.20, | 0.00) DC | NA | | | | 5TH HIGHEST VALUE I | S 2.43998 AT (| 577756.38, | 4165718.25, | 8.20, | 0.00) DC | NA | | | | 6TH HIGHEST VALUE I | S 2.43014 AT (| 577746.81, | 4165718.25, | 8.20, | 0.00) DC | NA | | | | 7TH HIGHEST VALUE I | S 2.41881 AT (| 577770.00, | 4165718.25,
4165718.25,
4165720.00, | 8.20, | 0.00) DC | NA | | | | 8TH HIGHEST VALUE I | S 2.40925 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) DC | NA | | | | 9TH HIGHEST VALUE I | S 2.40908 AT (| 577770.00, | 4165730.00, | 8.20, | 0.00) DC | NA | | | | 5TH HIGHEST VALUE I 6TH HIGHEST VALUE I 7TH HIGHEST VALUE I 8TH HIGHEST VALUE I 9TH HIGHEST VALUE I 10TH HIGHEST VALUE I | 2.38681 AT (| 577780.00, | 4165730.00, | 8.50, | 0.00) DC | NA | | | 12 | 1ST HIGHEST VALUE I | 2.47368 AT (2.46920 AT (2.45928 AT (2.45128 AT (2.43778 AT (2.43686 AT (2.43686 AT (2.43508 AT (2.43508 AT (2.42159 | 577756.38, | 4165725.00, | 8.20, | 0.00) DC | NA | | | | 2ND HIGHEST VALUE I | S 2.46920 AT (| 577760.00, | 4165730.00, | 8.20, | 0.00) DC | NA | | | | 3RD HIGHEST VALUE I | S 2.45928 AT (| 577756.31, | 4165734.50, | 8.20, | 0.00) DC | NA | | | | 4TH HIGHEST VALUE I | S 2.45128 AT (| 577760.00, | 4165720.00, | 8.20, | 0.00) DC | NA | | | | 5TH HIGHEST VALUE I | S 2.43778 AT (| 577756.38, | 4165718.25, | 8.20, | 0.00) DC | NA | | | | 6TH HIGHEST VALUE I | S 2.43686 AT (| 577780.00, | 4165720.00, | 8.50, | 0.00) DC | NA | | | | 7TH HIGHEST VALUE I | .s 2.43606 AT (| 577770.00, | 4165720.00, | 8.20, | 0.00) DC | NA | | | | 8TH HIGHEST VALUE I | S 2.43508 AT (| 577770.00. | 4165730.00. | 8.20. | 0.00) DC | NA | | | | 9TH HIGHEST VALUE I | S 2.42159 AT (| 577780.00, | 4165730.00, | 8.50. | 0.00) DC | NA | | | | 10TH HIGHEST VALUE I | 2.41119 AT (| 577746.81, | 4165718.25, | 8.20, | 0.00) DC | NA | | | *** I | SCST3 - VERSION 02035 | *** *** Eastshore | Energy LLC | | | | *** | 01/25/07 | | 4 434000 | U ODEL | *** | | | | | *** | 16:23:53 | | CONC | LOPTs:
URBA | AN ELEV | GRDRIS | | | | | PAGE1908 | | | | *** T | HE SUMMARY OF | MAXIMUM PERIO | D (43824 HR | RS) RESULTS ** | * | | | | | | | | • | , | | | | | | ** CONC O | F NGAS IN | MICROGRAMS/M* | *3 | | ** | | | | | | | | | | NETWORK | | | GROUP | ID
 | AVERAGE CONC | REC: | EPTOR (XR, YR | , ZELEV, ZFI | .AG) OF TYPE | GRID-ID | | | | 1ST HIGHEST VALUE I | | | | | | | | | | | 2.02000 111 (| , | | 0.20, | 0.00, DC | 2122 | | ``` 2ND HIGHEST VALUE IS 2.51922 AT (577756.38, 4165725.00, 8.20, 0.00) DC 2.51665 AT (577756.31, 4165734.50, 3RD HIGHEST VALUE IS 8.20, 0.00) DC NA 2.49922 AT (577770.00, 4165730.00, 0.00) DC 4TH HIGHEST VALUE IS 8.20, NA 5TH HIGHEST VALUE IS 2.49856 AT (577780.00, 4165720.00, 8.50, 0.00) DC 6TH HIGHEST VALUE IS 2.49342 AT (577760.00, 4165720.00, 8.20, 0.00) DC NA 2.49268 AT (577780.00, 4165730.00, 7TH HIGHEST VALUE IS 8.50, 0.00) DC NA 8TH HIGHEST VALUE IS 2.48867 AT (577770.00, 4165720.00, 8.20, 0.00) DC NA 9TH HIGHEST VALUE IS 2.47204 AT (577756.38, 4165718.25, 8.20, 0.00) DC NA 10TH HIGHEST VALUE IS 2.46545 AT (577760.00, 4165740.00, 8.20, 0.00) DC 2.54653 AT (577780.00, 4165730.00, 10 1ST HIGHEST VALUE IS 8.50, 0.00) DC 2.53246 AT (577780.00, 4165720.00, 2ND HIGHEST VALUE IS 8.50, 0.00) DC NA 3RD HIGHEST VALUE IS 2.52666 AT (577770.00, 4165730.00, 8.20, 0.00) DC 4TH HIGHEST VALUE IS 2.52230 AT (577760.00, 4165730.00, 8.20, 0.00) DC NA 2.50997 AT (577756.31, 4165734.50, 5TH HIGHEST VALUE IS 8.20, 0.00) DC NA 6TH HIGHEST VALUE IS 2.50199 AT (577790.00, 4165720.00, 8.50. 0.00) DC NA 7TH HIGHEST VALUE IS 2.49741 AT (577790.00, 4165730.00, 8.50, 0.00) DC NA 8TH HIGHEST VALUE IS 2.49268 AT (577770.00, 4165720.00, 8.20, 0.00) DC 9TH HIGHEST VALUE IS 2.48866 AT (577756.38, 4165725.00, 0.00) DC 8.20, NA 2.48024 AT (577760.00, 4165740.00, 10TH HIGHEST VALUE IS 8.20, 0.00) DC 2.56491 AT (577780.00, 4165730.00, 0.00) DC 9 1ST HIGHEST VALUE IS 8.50, NA 2ND HIGHEST VALUE IS 2.53917 AT (577780.00, 4165720.00, 8.50, 0.00) DC NA 2.52847 AT (577770.00, 4165730.00, 8.20, 0.00) DC 3RD HIGHEST VALUE IS NA 2.52595 AT (577790.00, 4165730.00, 4TH HIGHEST VALUE IS 8.50, 0.00) DC NΑ 2.52099 AT (577790.00, 4165720.00, 8.50, 0.00) DC 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 2.50472 AT (577760.00, 4165730.00, 8.20, 0.00) DC 7TH HIGHEST VALUE IS 2.48983 AT (577756.31, 4165734.50, 8.20, 0.00) DC NA 2.48150 AT (577800.00, 4165720.00, 8TH HIGHEST VALUE IS 8.50, 0.00) DC NA 9TH HIGHEST VALUE IS 2.48118 AT (577770.00, 4165720.00, 8.20, 0.00) DC NA 2.47805 AT (577770.00, 4165740.00, 0.00) DC NA 10TH HIGHEST VALUE IS 8.20, *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC 01/25/07 *** 16:23:53 PAGE1909 **MODELOPTs: CONC URBAN ELEV GRDRIS ``` | GROUP II |) | AVERAGE CONC | RECEPTOR | (XR, YR, ZELEV, | ZFLAG) OF TYPE | NETWORK GRID-ID | |----------|---|--------------|---|---|----------------------|-----------------| | 8 | 1ST HIGHEST VALUE I
2ND HIGHEST VALUE I
3RD HIGHEST VALUE I | 2.54966 AT (| 577790.00, 4165 | 730.00, 8.50,
730.00, 8.50,
720.00, 8.50, | | NA
NA
NA | | | 4TH HIGHEST VALUE I
5TH HIGHEST VALUE I | | - · · · · · · · · · · · · · · · · · · · | 720.00, 8.50,
730.00, 8.20, | 0.00) DC
0.00) DC | NA
NA | | 6ТН | HIGHEST V | VALUE | IS | 2.50512 | AT (| 577800.00, | 4165720.00, | 8.50, | 0.00) | DC | NA | |------|-----------|-------|----|---------|------|------------|-------------|-------|-------|----|----| | 7TH | HIGHEST V | VALUE | IS | 2.50195 | AT (| 577800.00, | 4165730.00, | 8.50, | 0.00) | DC | NA | | 8TH | HIGHEST V | VALUE | IS | 2.49436 | AT (| 577810.00, | 4165720.00, | 8.80, | 0.00) | DC | NA | | 9TH | HIGHEST V | VALUE | IS | 2.47987 | AT (| 577770.00, | 4165740.00, | 8.20, | 0.00) | DC | NA | | 10TH | HIGHEST V | VALUE | IS | 2.47935 | AT (| 577790.00, | 4165740.00, | 8.50, | 0.00) | DC | NA | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY *** **MODELOPTs: CONC URBAN ELEV GRDRIS *** THE SUMMARY OF HIGHEST 1-HR RESULTS *** 01/25/07 16:23:53 PAGE1910 | GROUP II |) | | AVERAGE CONC | DATE
(YYMMDDHH) | RECEP | FOR (XR, YR, | ZELEV, ZFLAG) | OF | TYPE | NETWORK
GRID-ID | |----------|------|------------------|--------------|--------------------|------------|--------------|---------------|-------|------|--------------------| | ALL | HIGH | 1ST HIGH VALUE I | S 241.45547 | ON 90061314: AT (| 577733.62, | 4165788.25, | 7.90, | 0.00) | DC | NA | | NATGAS | HIGH | 1ST HIGH VALUE I | s 241.45547 | ON 90061314: AT (| 577733.62, | 4165788.25, | 7.90, | 0.00) | DC | NA | | S1 | HIGH | 1ST HIGH VALUE I | S 64.78739 | ON 93051913: AT (| 577575.88, | 4165815.75, | 6.90, | 0.00) | DC | NA | | S2 | HIGH | 1ST HIGH VALUE I | S 65.94718 | ON 93051913: AT (| 577585.62, | 4165815.50, | 7.00, | 0.00) | DC | NA | | S3 | HIGH | 1ST HIGH VALUE I | S 64.50179 | ON 90050910: AT (| 577570.00, | 4165830.00, | 7.00, | 0.00) | DC | NA | | S4 | HIGH | 1ST HIGH VALUE I | S 17.94952 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | S5 | HIGH | 1ST HIGH VALUE I | S 18.24152 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | S6 | HIGH | 1ST HIGH VALUE I | S 18.29713 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | S7 | HIGH | 1ST HIGH VALUE I | s 18.26651 | ON 92042915: AT (| 577670.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | S8 | HIGH | 1ST HIGH VALUE I | S 19.20976 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC | NA | | S9 | HIGH | 1ST HIGH VALUE I | S 18.93040 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC | NA | | S10 | HIGH | 1ST HIGH VALUE I | S 18.56981 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC
 NA | | *** ISC | | VERSION 02035 *** | *** Eastshor *** | e Energy LLC | | | | *** | | 01/25/07
16:23:53
PAGE1911 | |---------|------|-------------------|------------------|-------------------|------------|-------------|-------|-------|----|----------------------------------| | 3 | HIGH | 1ST HIGH VALUE IS | 64.50179 | ON 90050910: AT (| 577570.00, | 4165830.00, | 7.00, | 0.00) | DC | NA | | 2 | HIGH | 1ST HIGH VALUE IS | 65.94718 | ON 93051913: AT (| 577585.62, | 4165815.50, | 7.00, | 0.00) | DC | NA | | 1 | HIGH | 1ST HIGH VALUE IS | 64.78739 | ON 93051913: AT (| 577575.88, | 4165815.75, | 6.90, | 0.00) | DC | NA | | SA11 | HIGH | 1ST HIGH VALUE IS | 241.45547 | ON 90061314: AT (| 577733.62, | 4165788.25, | 7.90, | 0.00) | DC | NA | | S14 | HIGH | 1ST HIGH VALUE IS | 17.74215 | ON 93042016: AT (| 577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | S13 | HIGH | 1ST HIGH VALUE IS | 17.81702 | ON 90070518: AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | S12 | HIGH | 1ST HIGH VALUE IS | 17.73004 | ON 93081817: AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | S11 | HIGH | 1ST HIGH VALUE IS | 18.22219 | ON 90070518: AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | *** THE SUMMARY OF HIGHEST 1-HR RESULTS *** | GROUP II |) | | AVERAGE CONC | DATE
(YYMMDDHH) | RECEP | TOR (XR, YR, | ZELEV, ZFLAG) | OF | TYPE | NETWORK
GRID-ID | |----------|------|------------------|--------------|--------------------|------------|--------------|---------------|-------|------|--------------------| | 4 | HIGH | 1ST HIGH VALUE I | S 17.94952 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | 5 | HIGH | 1ST HIGH VALUE I | S 18.24152 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | 6 | HIGH | 1ST HIGH VALUE I | s 18.29713 | ON 92042915: AT (| 577660.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | 7 | HIGH | 1ST HIGH VALUE I | s 18.26651 | ON 92042915: AT (| 577670.00, | 4165840.00, | 7.60, | 0.00) | DC | NA | | 14 | HIGH | 1ST HIGH VALUE I | s 17.74215 | ON 93042016: AT (| 577708.12, | 4165718.75, | 7.90, | 0.00) | DC | NA | | 13 | HIGH | 1ST HIGH VALUE I | s 17.81702 | ON 90070518: AT (| 577700.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | 12 | HIGH | 1ST HIGH VALUE I | s 17.73004 | ON 93081817: AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | 11 | HIGH | 1ST HIGH VALUE I | s 18.22219 | ON 90070518: AT (| 577710.00, | 4165710.00, | 7.90, | 0.00) | DC | NA | | 10 | HIGH | 1ST HIGH VALUE I | s 18.56981 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC | NA | | 9 | HIGH | 1ST HIGH VALUE I | S 18.93040 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC | NA | | 8 | HIGH | 1ST HIGH VALUE I | s 19.20976 | ON 91031413: AT (| 577755.88, | 4165762.50, | 8.20, | 0.00) | DC | NA | # Health Risk Screening Analysis Summary for Standby Generator Diesel Engine Facility = Eastshore Energy Center, (Hayward, CA) - Plant #18041; Application #15195 - ISC Air Dispersion Model Used - Union City Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used - Urban Land Use @ pt of Max for Natural Gas | Health Ris | k Estimates: | • | | | | Dies | el PM | | | |------------|---------------|--------------------------|--|---|---------|--|---|----------------------|---| | Receptor | Max. Annual I | Emission Rate
(g/sec) | Max. Annual Avg.
Chi/Q
(ug/m³ per g/sec) | Annual Average
Exposure
Concentration ¹
(ug/m³) | _ | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Inhalation Reference
Exposure Level (REL)
(ug/m³) | IVIAN. CALICEL INION | Max. Non-cancer
Hazard Quotient ⁴ | | Resident | 4.5434 | 6.5E-05 | 4.8E-01 | 0.00003 | 9.5E-09 | 1.1E+00 | 5.0E+00 | 1.05E-08 | 6.3E-06 | | Worker | 4.5434 | 6.5E-05 | 1.8E+01 | 0.00115 | 2.9E-07 | 1.1E+00 | 5.0E+00 | 3.16E-07 | 2.2E-04 | | Student | 0 | 0.0E+00 | 0 | 0.0E+00 | 0.0E+00 | 1.1E+00 | 5.0E+00 | 0.0E+00 | 0.0E+00 | ^{1.} Annual Average Exposure Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | | |--|-------------------|-----------------------|-----------------------|---|-------------------|--------------------| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustme | nt Factors (EAFs) | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | Source is Operating | 1 | 1 | 50 | 70 | (Cancer risk) | quotient) | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fraction of Time Worker is Present While the Source is Operating | 1.00 | 1.00 | 0.98 | 0.57 | 0.56 | 0.98 | | Fraction of Time Student is Present While the Source is Operating | 1.00 | 1.00 | 0.72 | 0.13 | 0.09 | 0.72 | ^{5.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. ### Exposure Parameters: | | | | | | Units | | |----------|------------------------|-------------|----------------|---------------|-----------------------------|----------------------| | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate (BR) ⁶ | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug/L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{6.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). ^{2.} Inhalation Dose (mg/kg-day) = Ann. Avg. Exp. Conc. (ug/m³) * BR (L/kg-day) * UCF (mg-m³)/(ug/L) * EAF_(cancer risk) ^{3.} Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day)¹ ^{4.} Max. Non-cancer Hazard Quotient = Ann. Avg. Exp. Conc. (ug/m³) * EAF_(non-cancer) / REL (ug/m³) Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). ## Health Risk Screening Analysis Summary for Standby Generator Diesel Engine Facility = Eastshore Energy Center, (Hayward, CA) - Plant #18041; Application #15195 MAX PT - ISC Air Dispersion Model Used - Union City Meteorological Data Used - Hayward Terrain Data Used - Daytime Scalars Used - Urban Land Use | Health Ris | k Estimates: | • | | | | Dies | el PM | | | |------------|---------------|--------------------------|--|---|---------|--|---|----------------------|---| | Receptor | Max. Annual I | Emission Rate
(g/sec) | Max. Annual Avg.
Chi/Q
(ug/m³ per g/sec) | Annual Average
Exposure
Concentration ¹
(ug/m³) | _ | Inhalation Cancer
Potency Factor (CPF)
(mg/kg-day) ⁻¹ | Inhalation Reference
Exposure Level (REL)
(ug/m³) | IVIAN. CALICEL INION | Max. Non-cancer
Hazard Quotient ⁴ | | Resident | 4.5434 | 6.5E-05 | 5.2E-01 | 0.00003 | 1.0E-08 | 1.1E+00 | 5.0E+00 | 1.13E-08 | 6.8E-06 | | Worker | 4.5434 | 6.5E-05 | 3.5E+01 | 0.00229 | 5.7E-07 | 1.1E+00 | 5.0E+00 | 6.30E-07 | 4.5E-04 | | Student | 0 | 0.0E+00 | 0 | 0.0E+00 | 0.0E+00 | 1.1E+00 | 5.0E+00 | 0.0E+00 | 0.0E+00 | ^{1.} Annual Average Exposure Concentration (ug/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (ug/m³ per g/sec) Exposure Adjustment Factors (EAFs) for Sources that Operate Intermittently: | | Daily (hours/day) | Weekly
(days/week) | Annually (weeks/year) | Lifetime (years per 70-
yr lifetime) | | | | | |--|-------------------|-----------------------|-----------------------|---|------------------------------------|--------------------|--|--| | Resident is Present While Source is Operating | 24 | 7 | 50 | 70 | Exposure Adjustment Factors (EAFs) | | | | | Worker is Present While Source is Operating | 8 | 5 | 49 | 40 | | | | | | Student is Present While Source is Operating | 10 | 5 | 36 | 9 | (cancer risk) | (non-cancer hazard | | | | Source is Operating | 1 | 1 | 50 | 70 | (Cancer risk) | quotient) | | | | Fraction of Time Resident is Present While the Source is Operating | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Fraction of Time Worker is Present While the Source is Operating | 1.00 | 1.00 | 0.98 | 0.57 | 0.56 | 0.98 | | | | Fraction of Time Student is Present While the Source is Operating | 1.00 | 1.00 | 0.72 | 0.13 | 0.09 | 0.72 | | | ^{5.} Note that the fraction of time that a receptor is present while a source is operating can not exceed one. ### Exposure Parameters: | | | | | | Units | | |----------|------------------------|-------------|----------------|---------------|-----------------------------|----------------------| | | Breathing | Exposure | Exposure | Exposure | Conversion | Averaging | | Receptor | Rate
(BR) ⁶ | Time (ET) | Frequency (EF) | Duration (ED) | Factor (UCF) | Time (AT - 70 years) | | | (L/kg-day) | (hours/day) | (day/year) | (years) | (mg-m ³)/(ug/L) | (days) | | Resident | 302 | 24 | 350 | 70 | 1.0E-06 | 25,550 | | Worker | 447 | 8 | 245 | 40 | 1.0E-06 | 25,550 | | Student | 581 | 10 | 180 | 9 | 1.0E-06 | 25,550 | ^{6.} Based on a 24-hour day. Worker breathing rate is 149 L/kg-day (for an 8-hour workday), and 447 L/kg-day (for a 24-hour day). ^{2.} Inhalation Dose (mg/kg-day) = Ann. Avg. Exp. Conc. (ug/m³) * BR (L/kg-day) * UCF (mg-m³)/(ug/L) * EAF_(cancer risk) ^{3.} Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day)¹ ^{4.} Max. Non-cancer Hazard Quotient = Ann. Avg. Exp. Conc. (ug/m³) * EAF_(non-cancer) / REL (ug/m³) Thus, if a receptor is present 10 hours/day, but the source operates only 8 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 8 hours). ``` BEE-Line ISCST3 "BEEST" Version 9.00 Input File - C:\IRMA\BEEST\DCModel\EECenter(unitless)gradualplumerise_90_DIESEL.DTA Output File - C:\IRMA\BEEST\DCModel\EECenter(unitless)gradualplumerise_90_DIESEL.LST Met File - C:\metdata\UnionCity\metdata00-04600.asc *** Message Summary For ISC3 Model Setup *** ----- Summary of Total Messages ----- 0 Fatal Error Message(s) A Total of A Total of 1 Warning Message(s) A Total of 0 Informational Message(s) ****** FATAL ERROR MESSAGES ****** *** NONE *** ****** WARNING MESSAGES ****** RE W282 2397 CHK_EL:RecElev < SrcBase; See non-DFAULT HE>ZI option in MCB#9 ********* *** SETUP Finishes Successfully *** ******** *** 01/25/07 *** 16:44:31 PAGE 1 **MODELOPTs: CONC URBAN ELEV GRDRIS MODEL SETUP OPTIONS SUMMARY **Intermediate Terrain Processing is Selected **Model Is Setup For Calculation of Average CONCentration Values. -- SCAVENGING/DEPOSITION LOGIC -- **Model Uses NO DRY DEPLETION. DDPLETE = F **Model Uses NO WET DEPLETION. WDPLETE = F **NO WET SCAVENGING Data Provided. ``` ``` **NO GAS DRY DEPOSITION Data Provided. **Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations **Model Uses URBAN Dispersion. **Model Uses User-Specified Options: 1. Gradual Plume Rise. 2. Stack-tip Downwash. 3. Buoyancy-induced Dispersion. 4. Calms Processing Routine. 5. Not Use Missing Data Processing Routine. 6. User-Specified Wind Profile Exponents. 7. Default Vertical Potential Temperature Gradients. **Model Accepts Receptors on ELEV Terrain. **Model Assumes No FLAGPOLE Receptor Heights. **Model Calculates 1 Short Term Average(s) of: 1-HR and Calculates PERIOD Averages **This Run Includes: 1 Source(s); 4 Source Group(s); and 2357 Receptor(s) **The Model Assumes A Pollutant Type of: DIESEL **Model Set To Continue RUNning After the Setup Testing. **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Anem. Hgt. (m) = 20.00; Decay Coef. = 0.000 ; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 1.4 MB of RAM. EECenter(unitless)gradualplumerise_90_DIESEL.DTA **Input Runstream File: **Output Print File: EECenter(unitless)gradualplumerise_90_DIESEL.LST *** *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC 01/25/07 16:44:31 **MODELOPTs: PAGE 2 GRDRIS CONC URBAN ELEV ``` ### *** POINT SOURCE DATA *** | SOURCE
ID | | EMISSION RATE
(GRAMS/SEC) | X | Y
(METERS) | BASE
ELEV.
(METERS) | STACK HEIGHT (METERS) | STACK
TEMP.
(DEG.K) | STACK EXIT VEL. (M/SEC) | STACK DIAMETER (METERS) | BUILDING
EXISTS | EMISSION SCALAR V BY | | |--|---|--|---|-------------------------------------|--|--------------------------------------|---|---|--------------------------------------|--|-------------------------------------|---| | 15 | 0 | 0.10000E+01 | 577581.7 | 165776.2 | 7.0 | 10.00 | 735.15 | 41.47 | 0.18 | YES | | | | *** ISCST3 | - VERSIO | N 02035 *** | *** East
*** | shore Ene | ergy LLC | | | | | | * * * | 01/25/07
16:44:31 | | **MODELOPTs: | | URBAN ELE | EV | GI | RDRIS | | | | | | | PAGE 3 | | | | | ٠ | ** SOURCI | E IDs DEF | INING SOU | RCE GROU | PS *** | | | | | | GROUP ID | | | | | SOU | RCE IDs | ALL 1 | .5 , | | | | | | | | | | | | | SA11 1 | .5 , | | | | | | | | | | | | | S15 1 | .5 , | | | | | | | | | | | | | 15 1 | .5 , | | | | | | | | | | | | | *** ISCST3 | - VERSIO | N 02035 *** | *** East
*** | shore Ene | ergy LLC | | | | | | *** | 01/25/07
16:44:31 | | **MODELOPTs: | | URBAN ELE | EV | GI | RDRIS | | | | | | | PAGE 4 | | | | | ** | * DIRECT | ION SPECIE | FIC BUILD | ING DIME | NSIONS *** | | | | | | 7 9.0,
13 9.0,
19 13.3,
25 9.0, | BW WA
129.5, 0
59.7, 0
95.7, 0 | 8 9.0,
14 9.0,
20 13.3,
26 9.0, | BW WAR
, 126.6, 0
, 38.8, 0
, 109.4, 0
, 52.8, 0
, 38.8, 0
, 109.4, 0 | 3 9
9 6
15 13
21 9
27 6 | BH BW
9.0, 119.7
5.7, 38.8
3.3, 56.3
9.0, 119.7
5.7, 38.8
9.0, 119.8 | 3, 0 1
3, 0 1
7, 0 2
3, 0 2 | 4 9.0,
0 9.0,
6 13.3,
2 9.0,
8 9.0, | BW WAK
109.3, 0
40.8, 0
54.1, 0
109.3, 0
40.8, 0
126.6, 0 | 5 9
11 9
17 13
23 9
29 9 | H BW V .0, 95.5, .0, 60.0, .3, 50.2, .0, 95.5, .0, 60.0, | 0 6
0 12
0 18
0 24
0 30 | BH BW WAK
9.0, 78.8, 0
9.0, 79.0, 0
13.3, 47.6, 0
9.0, 78.8, 0
9.0, 79.0, 0
9.0, 128.6, 0 | **MODELOPTs: CONC URBAN ELEV GRDRIS # *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZFLAG) (METERS) *** *** 01/25/07 16:44:31 PAGE 5 | (577932.8, 4166528.2, | 8.6, | 0.0); | (577932.8, | | 9.1, | 0.0); | |------------------------|------|-------|-------------|------------|------|-------| | (577936.3, 4166457.2, | 9.1, | 0.0); | , , | 4166421.8, | 8.8, | 0.0); | | (577939.9, 4166389.8, | 8.8, | 0.0); | (577939.9, | • | 8.8, | 0.0); | | (577954.1, 4166347.2, | 8.8, | 0.0); | (577982.5, | | 8.8, | 0.0); | | (578003.8, 4166347.2, | 8.9, | 0.0); | (578032.2, | | 9.1, | 0.0); | | (578071.2, 4166347.2, | 9.2, | 0.0); | (578096.1, | 4166343.8, | 9.4, | 0.0); | | (577993.1, 4166340.0, | 8.8, | 0.0); | (577964.8, | 4166340.0, | 8.8, | 0.0); | | (577943.4, 4166386.2, | 8.8, | 0.0); | (577947.0, | 4166428.8, | 8.8, | 0.0); | | (577939.9, 4166478.5, | 9.1, | 0.0); | (577939.9, | 4166507.0, | 9.1, | 0.0); | | (577477.6, 4165819.0, | 6.3, | 0.0); | (577479.0, | 4165819.0, | 6.4, | 0.0); | | (577488.7, 4165818.8, | 6.4, | 0.0); | (577498.4, | 4165818.5, | 6.4, | 0.0); | | (577508.1, 4165818.0, | 6.4, | 0.0); | (577517.8, | | 6.4, | 0.0); | | (577527.5, 4165817.5, | 6.6, | 0.0); | (577537.1, | 4165817.0, | 6.7, | 0.0); | | (577546.8, 4165816.8, | 6.7, | 0.0); | (577556.5, | 4165816.5, | 6.7, | 0.0); | | (577566.2, 4165816.0, | 6.7, | 0.0); | (577575.9, | 4165815.8, | 6.9, | 0.0); | | (577585.6, 4165815.5, | 7.0, | 0.0); | (577595.3, | 4165815.0, | 7.0, | 0.0); | | (577605.0, 4165814.8, | 7.0, | 0.0); | (577614.7, | 4165814.5, | 7.2, | 0.0); | | (577624.4, 4165814.2, | 7.3, | 0.0); | (577634.0, | 4165814.0, | 7.3, | 0.0); | | (577643.7, 4165813.5, | 7.3, | 0.0); | (577653.4, | 4165813.2, | 7.3, | 0.0); | | (577663.1, 4165813.0, | 7.4, | 0.0); | (577672.8, | 4165812.5, | 7.6, | 0.0); | | (577682.5, 4165812.2, | 7.6, | 0.0); | (577691.6, | 4165809.0, | 7.6, | 0.0); | | (577700.7, 4165805.5, | 7.6, | 0.0); | (577709.7, | 4165802.2, | 7.9, | 0.0); | | (577718.8, 4165799.0, | 7.9, | 0.0); | (577726.2, | 4165793.5, | 7.9, | 0.0); | | (577733.6, 4165788.2, | 7.9, | 0.0); | (577741.0, | 4165782.8, | 7.9, | 0.0); | | (577748.4, 4165777.5, | 7.9, | 0.0); | (577755.8, | 4165772.0, | 8.1, | 0.0); | | (577755.9, 4165762.5, | 8.2, | 0.0); | (577756.0, | 4165753.2, | 8.2, | 0.0); | | (577756.2, 4165743.8, | 8.2, | 0.0); | (577756.3, | 4165734.5, | 8.2, | 0.0); | | (577756.4, 4165725.0, | 8.2, | 0.0); | (577756.4, | 4165718.2, | 8.2, | 0.0); | | (577746.8, 4165718.2, | 8.2, | 0.0); | (577737.1, | 4165718.5, | 8.1, | 0.0); | | (577727.5, 4165718.5, | 7.9, | 0.0); | (577717.8, | 4165718.5, | 7.9, | 0.0); | | (577708.1, 4165718.8, | 7.9, | 0.0); | (577698.5, | 4165718.8, | 7.7, | 0.0); | | (577688.8, 4165719.0, | 7.6, | 0.0); | (577679.2, | 4165719.0, | 7.6, | 0.0); | | (577669.5, 4165719.0, | 7.6, | 0.0); | (577659.8, | 4165719.2, | 7.3, | 0.0); | | (577650.2, 4165719.2, | 7.3, | 0.0); | (577640.5, | 4165719.5, | 7.3, | 0.0); | | (577630.9, 4165719.5, | 7.3, | 0.0); | (577621.2, | 4165719.5, | 7.0, | 0.0); | | (577611.5, 4165719.8, | 7.0, | 0.0); | (577601.9, | 4165719.8, | 7.0, | 0.0); | | (577592.2, 4165720.0, | 7.0, | 0.0); | (577582.6, | 4165720.0, | 6.8, | 0.0); | | (577572.9, 4165720.0, | 6.7, | 0.0); | (577563.2, | 4165720.0, | 6.7, | 0.0); | | | | | | | | | ### (577553.6, 4165720.2, 6.5, 0.0); (577543.9, 4165720.2, 6.4, 0.0); (577534.3, 4165720.5, 6.4, 0.0); (577524.6, 4165720.5, 6.2, 0.0); (577514.9, 4165720.5, 6.1, 0.0); (577505.3, 4165720.8, 6.1, 0.0); (577495.6, 4165720.8, 6.1, 0.0); (577486.0, 4165721.0, 6.1, 0.0); (577476.4, 4165730.8,
(577476.3, 4165721.0, 6.0, 0.0); 6.1, 0.0); (577476.6, 4165740.5, (577476.7, 4165750.5, 6.1, 6.1, 0.0); 0.0); (577476.8, 4165760.2, 6.1, 0.0); (577477.0, 4165770.0, 6.1, 0.0); *** *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC 01/25/07 *** 16:44:31 PAGE 32 **MODELOPTs: CONC URBAN ELEV GRDRIS ## *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO) NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE. ## *** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC) 1.54, 3.09, 5.14, 8.23, 10.80, *** WIND PROFILE EXPONENTS *** | STABILITY | | WIN | D SPEED CATEGORY | Y | | | |-----------|------------|------------|------------------|------------|------------|------------| | CATEGORY | 1 | 2 | 3 | 4 | 5 | 6 | | A | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | | В | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | .70000E-01 | | C | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | .10000E+00 | | D | .15000E+00 | .15000E+00 | .15000E+00 | .15000E+00 | .15000E+00 | .15000E+00 | | E | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | .35000E+00 | | F | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | .55000E+00 | *** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER) | STABILITY | | WIN | Y | | | | |-----------|------------|------------|------------|------------|------------|------------| | CATEGORY | 1 | 2 | 3 | 4 | 5 | 6 | | A | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | В | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | C | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | D | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | .00000E+00 | | E | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | .20000E-01 | | F | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | .35000E-01 | | | | | | | | | PAGE 33 **MODELOPTs: CONC URBAN ELEV GRDRIS ### *** THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** FILE: metdata00-04600.asc FORMAT: (4I2,2F9.4,F6.1,I2,2F7.1,f9.4,f10.1,f8.4,i4,f7.2) SURFACE STATION NO.: 1901 UPPER AIR STATION NO.: 1901 NAME: UNKNOWN YEAR: 1990 YEAR: 1990 YEAR: 1990 | | FLOW | SPEED | TEMP | STAB | MIXING H | EIGHT (M) | USTAR | M-O LENGTH | z-0 | IPCODI | E PRATE | |-------------|--------|-------|-------|-------|----------|-----------|--------|------------|--------|--------|---------| | YR MN DY HR | VECTOR | (M/S) | (K) | CLASS | RURAL | URBAN | (M/S) | (M) | (M) | | (mm/HR) | | | | | | | | | | | | | | | 00 01 01 01 | 240 0 | 0 15 | 000 0 | | 600 0 | 600.0 | 0 0000 | 0 0 | 0 0000 | | 0 00 | | 90 01 01 01 | 342.0 | 2.15 | 283.0 | | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 02 | 303.0 | 1.00 | 283.0 | | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 03 | 267.0 | 1.07 | 283.0 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 04 | 288.0 | 1.00 | 282.8 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 05 | 296.0 | 1.00 | 282.4 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 06 | 312.0 | 1.70 | 282.0 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 (| 0.00 | | 90 01 01 07 | 326.0 | 2.19 | 281.8 | 6 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 (| 0.00 | | 90 01 01 08 | 314.0 | 2.59 | 281.5 | 5 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 (| 0.00 | | 90 01 01 09 | 304.0 | 2.10 | 281.9 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 0 | 0.00 | | 90 01 01 10 | 303.0 | 2.15 | 282.9 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 0 | 0.00 | | 90 01 01 11 | 333.0 | 2.32 | 284.1 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 12 | 339.0 | 3.31 | 284.5 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 13 | 345.0 | 2.24 | 284.1 | 3 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 14 | 335.0 | 2.82 | 283.5 | | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 | 0.00 | | 90 01 01 15 | 341.0 | 2.68 | 283.1 | | 600.0 | 600.0 | 0.0000 | | 0.0000 |) () | 0.00 | | 90 01 01 16 | 360.0 | 2.01 | 283.4 | | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | 90 01 01 17 | 64.0 | 1.00 | 282.8 | | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 17 | 36.0 | 1.16 | 282.5 | | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | 90 01 01 19 | 106.0 | 1.97 | 282.5 | | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 19 | 69.0 | 1.00 | 282.5 | | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | | 0.00 | | | | | | | | | | | | | | | 90 01 01 21 | 112.0 | 2.50 | 281.9 | | 600.0 | 600.0 | 0.0000 | | 0.0000 | | 0.00 | | 90 01 01 22 | 131.0 | 1.83 | 281.0 | 4 | 600.0 | 600.0 | 0.0000 | 0.0 | 0.0000 | 0 (| 0.00 | 90 01 01 23 151.0 2.46 280.8 5 600.0 600.0 0.0000 0.0 0.000 0.0000 0.0000 90 01 01 24 227.0 1.74 280.0 5 600.0 600.0 0.0000 0.0 0.000 0.0 0.0000 0 0.0000 *** NOTES: STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F. FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING. *** ISCST3 - VERSION 02035 *** *** Eastshore Energy LLC *** **MODELOPTs: CONC URBAN ELEV GRDRIS *** THE PERIOD (43824 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): 15 , *** *** 01/25/07 16:44:31 PAGE 34 *** DISCRETE CARTESIAN RECEPTOR POINTS *** ** CONC OF DIESEL IN MICROGRAMS/M**3 | X-COORD (M) | Y-COORD (M) | CONC | | X-COORD (M) | Y-COORD (M) | CONC | | | |-------------|-------------|----------|-----------|-------------|-------------|----------|-----|--| | 577932.75 | 4166528.25 | 0.38215 | | 577932.75 | 4166499.75 | 0.40169 | | | | 577936.31 | 4166457.25 | 0.42844 | | 577936.31 | 4166421.75 | 0.45316 | | | | 577939.88 | 4166389.75 | 0.47886 | | 577939.88 | 4166361.50 | 0.50581 | | | | 577954.06 | 4166347.25 | 0.51610 | | 577982.50 | 4166347.25 | 0.50824 | | | | 578003.81 | 4166347.25 | 0.50367 | | 578032.19 | 4166347.25 | 0.49782 | | | | 578071.25 | 4166347.25 | 0.48648 | | 578096.12 | 4166343.75 | 0.48157 | | | | 577993.12 | 4166340.00 | 0.51356 | | 577964.75 | 4166340.00 | 0.52100 | RES | | | 577943.44 | 4166386.25 | 0.48074 | | 577947.00 | 4166428.75 | 0.44355 | | | | 577939.88 | 4166478.50 | 0.41246 | | 577939.88 | 4166507.00 | 0.39440 | | | | 577477.62 | 4165819.00 | 3.09072 | | 577479.00 | 4165819.00 | 3.15002 | | | | 577488.69 | 4165818.75 | 3.36975 | | 577498.38 | 4165818.50 | 3.61986 | | | | 577508.12 | 4165818.00 | 3.88387 | | 577517.81 | 4165817.75 | 4.26888 | | | | 577527.50 | 4165817.50 | 5.65753 | | 577537.12 | 4165817.00 | 7.69417 | | | | 577546.81 | 4165816.75 | 10.55177 | | 577556.50 | 4165816.50 | 13.77655 | | | | 577566.19 | 4165816.00 | 14.55918 | | 577575.88 | 4165815.75 | 11.86849 | | | | 577585.62 | 4165815.50 | 8.58663 | | 577595.31 | 4165815.00 | 7.40701 | | | | 577605.00 | 4165814.75 | 7.86360 | | 577614.69 | 4165814.50 | 9.25977 | | | | 577624.38 | 4165814.25 | 10.25516 | | 577634.00 | 4165814.00 | 10.67657 | | | | 577643.69 | 4165813.50 | 10.89088 | | 577653.38 | 4165813.25 | 11.21649 | | | | 577663.12 | 4165813.00 | 11.63138 | | 577672.81 | 4165812.50 | 11.93098 | | | | 577682.50 | 4165812.25 | 11.78340 | | 577691.62 | 4165809.00 | 12.47078 | | | | 577700.69 | 4165805.50 | 13.03301 | | 577709.69 | 4165802.25 | 13.42173 | | | | 577718.81 | 4165799.00 | 13.45791 | | 577726.19 | 4165793.50 | 14.10096 | | | | 577733.62 | 4165788.25 | 14.44005 | | 577741.00 | 4165782.75 | 14.62820 | | | | 577748.38 | 4165777.50 | 14.57869 | | 577755.81 | 4165772.00 | 14.47177 | | | | 577755.88 | 4165762.50 | 15.78101 | | 577756.00 | 4165753.25 | 16.74888 | | | | 577756.19 | 4165743.75 | 17.38327 | | 577756.31 | 4165734.50 | 17.63976 | | | | 577756.38 | 4165725.00 | 17.54350 | IND (CUM) | 577756.38 | 4165718.25 | 17.27776 | | | | 577746.81 | 4165718.25 | 18.73650 | | 577737.12 | 4165718.50 | 20.36184 | | | | CONTC | | | | | | | | |--------------------|--------------|--------------------------|-----------|------------|----------|-----|----------| | **MODELOPTs: | | | | | | | PAGE 274 | | | | *** | | | | *** | 16:44:31 | | *** ISCST3 - VERSI | ON 02035 *** | *** Eastshore Energy LLC | | | | *** | 01/25/07 | | 577534.31 | 4165720.50 | 1.05879 | 577524.62 | 4165720.50 | 0.85775 | | | | 577553.62 | 4165720.25 | 2.56764 | 577543.88 | 4165720.25 | 1.50911 | | | | 577572.88 | 4165720.00 | 8.24627 | 577563.19 | 4165720.00 | 4.75374 | | | | 577592.19 | 4165720.00 | 18.43530 | 577582.62 | 4165720.00 | 13.24175 | | | | 577611.50 | 4165719.75 | 25.78679 | 577601.88 | 4165719.75 | 22.43861 | | | | 577630.88 | 4165719.50 | 31.07071 | 577621.19 | 4165719.50 | 27.82691 | | | | 577650.19 | 4165719.25 | 35.02361 | 577640.50 | 4165719.50 | 33.81364 | | | | 577669.50 | 4165719.00 | 34.30567 | 577659.81 | 4165719.25 | 35.02845 | IND | | | 577688.81 | 4165719.00 | 30.50341 | 577679.19 | 4165719.00 | 32.57171 | | | | 577708.12 | 4165718.75 | 26.23095 | 577698.50 | 4165718.75 | 28.28960 | | | | 577727.50 | 4165718.50 | 22.07144 | 577717.81 | 4165718.50 | 24.04777 | | | | | | | | | | | | CONC URBAN ELEV GRDRIS *** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS *** ** CONC OF DIESEL IN MICROGRAMS/M**3 | GROUP I | D
 | AVERAGE CONC | REC | EPTOR (XR, YR, | ZELEV, ZE | FLAG) OF TYP | NETWORK
E GRID-ID | |---------|--------------------|------------------|------------|----------------|-----------|--------------|----------------------| | ALL | 1ST HIGHEST VALUE | IS 35.02845 AT (| 577659 81 | 4165719.25, | 7.30, | 0.00) DC | NA | | 11111 | 2ND HIGHEST VALUE | | | 4165719.25, | | , | | | | 3RD HIGHEST VALUE | • | | 4165719.00, | | , | | | | 4TH HIGHEST VALUE | | | 4165719.50, | | , | | | | 5TH HIGHEST VALUE | • | | 4165719.00, | | | NA | | | 6TH HIGHEST VALUE | IS 31.07071 AT (| 577630.88, | 4165719.50, | 7.30, | 0.00) DC | NA | | | 7TH HIGHEST VALUE | IS 30.50341 AT (| 577688.81, | 4165719.00, | 7.60, | 0.00) DC | NA | | | 8TH HIGHEST VALUE | IS 29.12955 AT (| 577670.00, | 4165710.00, |
7.60, | 0.00) DC | NA | | | 9TH HIGHEST VALUE | IS 29.09073 AT (| 577660.00, | 4165710.00, | 7.30, | 0.00) DC | NA | | | 10TH HIGHEST VALUE | IS 28.58663 AT (| 577650.00, | 4165710.00, | 7.30, | 0.00) DC | NA | | | | | | | | | | | SA11 | 1ST HIGHEST VALUE | IS 35.02845 AT (| 577659.81, | 4165719.25, | 7.30, | 0.00) DC | NA | | | 2ND HIGHEST VALUE | IS 35.02361 AT (| 577650.19, | 4165719.25, | 7.30, | 0.00) DC | NA | | | 3RD HIGHEST VALUE | IS 34.30567 AT (| 577669.50, | 4165719.00, | 7.60, | 0.00) DC | NA | | | 4TH HIGHEST VALUE | IS 33.81364 AT (| 577640.50, | 4165719.50, | 7.30, | 0.00) DC | NA | | | 5TH HIGHEST VALUE | IS 32.57171 AT (| 577679.19, | 4165719.00, | 7.60, | 0.00) DC | NA | | | 6TH HIGHEST VALUE | IS 31.07071 AT (| 577630.88, | 4165719.50, | 7.30, | 0.00) DC | NA | | | 7TH HIGHEST VALUE | | 577688.81, | 4165719.00, | | , | NA | | | 8TH HIGHEST VALUE | | | 4165710.00, | | , | NA | | | 9TH HIGHEST VALUE | | | 4165710.00, | 7.30, | | | | | 10TH HIGHEST VALUE | IS 28.58663 AT (| 577650.00, | 4165710.00, | 7.30, | 0.00) DC | NA | | 015 | 1.00 | 70 25 00045 35 / | EEECE0 01 | 41.65510 05 | п 20 | 0 00) 50 | | | S15 | 1ST HIGHEST VALUE | | • | 4165719.25, | | , | | | | 2ND HIGHEST VALUE | | | 4165719.25, | | 0.00) DC | | | | 3RD HIGHEST VALUE | IS 34.30567 AT (| 577669.50, | 4165719.00, | 7.60, | 0.00) DC | NA | ``` 33.81364 AT (577640.50, 4165719.50, 7.30, 0.00) DC 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 32.57171 AT (577679.19, 4165719.00, 7.60, 0.00) DC 7.30, 0.00) DC 6TH HIGHEST VALUE IS 31.07071 AT (577630.88, 4165719.50, NA 7TH HIGHEST VALUE IS 30.50341 AT (577688.81, 4165719.00, 7.60, 0.00) DC 29.12955 AT (577670.00, 4165710.00, 7.60, 0.00) DC 29.09073 AT (577660.00, 4165710.00, 7.30, 0.00) DC 28.58663 AT (577650.00, 4165710.00, 7.30, 0.00) DC 8TH HIGHEST VALUE IS 29.12955 AT (577670.00, 4165710.00, NA 29.09073 AT (577660.00, 4165710.00, 9TH HIGHEST VALUE IS NA 10TH HIGHEST VALUE IS *** 01/25/07 *** 16:44:31 **MODELOPTs: PAGE 275 CONC URBAN ELEV GRDRIS *** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS *** ** CONC OF DIESEL IN MICROGRAMS/M**3 AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 15 1ST HIGHEST VALUE IS 35.02845 AT (577659.81, 4165719.25, 7.30, 0.00) DC 2ND HIGHEST VALUE IS 35.02361 AT (577650.19, 4165719.25, 7.30, 0.00) DC 3RD HIGHEST VALUE IS 34.30567 AT (577669.50, 4165719.00, 7.60, 0.00) DC NA 4TH HIGHEST VALUE IS 33.81364 AT (577640.50, 4165719.50, 7.30, 0.00) DC ``` 5TH HIGHEST VALUE IS 32.57171 AT (577679.19, 4165719.00, 7.60, 0.00) DC 7TH HIGHEST VALUE IS 30.50341 AT (577688.81, 4165719.00, 7.60, 0.00) DC 9TH HIGHEST VALUE IS 29.09073 AT (577660.00, 4165710.00, 7.30, 0.00) DC 10TH HIGHEST VALUE IS 28.58663 AT (577650.00, 4165710.00, 7.30, 0.00) DC 6TH HIGHEST VALUE IS 31.07071 AT (577630.88, 4165719.50, 8TH HIGHEST VALUE IS 29.12955 AT (577670.00, 4165710.00, *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY *** **MODELOPTs: CONC URBAN ELEV GRDRIS *** THE SUMMARY OF HIGHEST 1-HR RESULTS *** ** CONC OF DIESEL IN MICROGRAMS/M**3 DATE 7.30, 0.00) DC NA NA * * * 01/25/07 16:44:31 PAGE 276 7.60, 0.00) DC | GROUP ID | AVER | RAGE CONC | (YYMMDDHH) | RECEP | TOR (XR, YR, ZE | ELEV, ZFLAG) | OF T | TYPE | GRID-ID | | | | | | |--------------------------------|---|--------------|-------------------|------------|-----------------|--------------|-------|------|----------|--|--|--|--|--| | | | | | | | | | | | | | | | | | ALL H | HIGH 1ST HIGH VALUE IS | 979.23785 | ON 91040703: AT (| 577592.19, | 4165720.00, | 7.00, | 0.00) | DC | NA | | | | | | | SA11 H | HIGH 1ST HIGH VALUE IS | 979.23785 | ON 91040703: AT (| 577592.19, | 4165720.00, | 7.00, | 0.00) | DC | NA | | | | | | | S15 H | HIGH 1ST HIGH VALUE IS | 979.23785 | ON 91040703: AT (| 577592.19, | 4165720.00, | 7.00, | 0.00) | DC | NA | | | | | | | 15 H | HIGH 1ST HIGH VALUE IS | 979.23785 | ON 91040703: AT (| 577592.19, | 4165720.00, | 7.00, | 0.00) | DC | NA | | | | | | | *** RECEP | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY | | | | | | | | | | | | | | | *** ISCST3 - VERSION 02035 *** | | | | | | | | | | | | | | | | **MODELOPT | | | | | | | | | PAGE 277 | | | | | | | CONC | URBAN ELEV | | GRDRIS | | | | | | | | | | | | | *** Messag | ge Summary : ISCST3 Model Ex | xecution *** | | | | | | | | | | | | | | | - Summary of Total Messages | | | | | | | | | | | | | | | A Total of | f 0 Fatal Error M | Message(s) | | | | | | | | | | | | | | A Total of | f 1 Warning Messa | age(s) | | | | | | | | | | | | | | A Total of | f 133 Informational | Message(s) | | | | | | | | | | | | | | A Total of | f 133 Calm Hours Id | lentified | | | | | | | | | | | | | | ***** | ** FATAL ERROR MESSAGES **** *** NONE *** | **** | | | | | | | | | | | | | | ***** | ** WARNING MESSAGES **** | **** | | | | | | | | | | | | | RE W282 2397 CHK_EL:RecElev < SrcBase; See non-DFAULT HE>ZI option in MCB#9 | | | | | | | Y - 1 | 4,10 | | | | | | | | | | | | |-------|-------|-------|-------|----------|--------------------|-------|-------|-------|-------------------------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|------| | | | | | | | | 14.4 | | 12.16 | 11.20 | 10.36 | 9.61 | 9.01 | 8.41 | 7.93 | 7.45 | 7.02 | 6.63 | | | | | | | | | | 14.63 | 13.92
14 <mark>.</mark> 58 | 12.70 | 11.72 | 10.79 | 9.98 | 9.27 | 8.69 | 8.13 | 7.62 | 7.21 | | | | | | | | | | | 200 | 14.47 | 12.95 | 11.86 | 10.92 | 10.15 | 9.43 | 8.78 | 8.26 | 7.74 | | | | | | | | | | | | 15.78
15.43 | 14.02 | 12.81 | 11.82 | 10.91 | 10.10 | 9.44 | 8.81 | 8.24 | | | | | | | | | | | | 16l75
 16.35 | 14.85 | 13.56 | 12.52 | 11.54 | 10.73 | 9.97 | 9.29 | 8.69 | | | | | | | | | | | | 17.38
16.90 | 15.39 | 14.08 | 13.01 | 12.01 | 11.18 | 10.39 | 9.68 | 9.05 | | | | | | | | | | | | 17,64 | 15.60 | 14.41 | 13.28 | 12.29 | 11.47 | 10.67 | 9.96 | 9.37 | | 35.03 | 34.31 | 32.57 | 30.50 | _28.29 _ | 26.23 | 24.05 | 22.07 | 20.36 | 18.74 | 17.54
1
16.84
17.28 | 15.50 | 14.40 | 13.33 | 12.38 | 11.59 | 10.82 | 10.12 | 9.54 | | 29.09 | 29.13 | 28.14 | 26.77 | 25.41 | 23.72 | 22.03 | 20.41 | 19.02 | 17.60 | 16.31 | 15.13 | 14.15 | 13.18 | 12.30 | 11.56 | 10.83 | 10.16 | 9.61 | | 24.34 | 24.36 | 23.92 | 23.16 | 22,36 | 21.22 | 20,02 | 18.94 | 17.76 | 16.62 | 15.65 | 14.64 | 13.71 | 12.85 | 12.06 | 11.39 | 10.72 | 10.10 | 9.57 | | 20.36 | 20.52 | 20.38 | 20.17 | 19.57 | 18.83 | 18.02 | 17.28 | 16.39 | 15.61 | 14.75 | 13.92 | 13.14 | 12.40 | 11.70 | 11.12 | 10.51 | 9.94 | 9.41 | | 17.36 | 17.52 | 17.51 | 17.50 | 17.15 | - 18.70 | 16.28 | 15.67 | 5.13 | 14.46 | 13.79 | 13.13 | 12.49 | 11.86 | 11.33 | 10.76 | 10.22 | 9.71 | 9.22 | | 15.11 | 15.24 | 15.25 | 15.31 | 15.12 | 14.97 | 14.61 | 14.20 | 13.84 | 13.35 | 12.84 | 12.32 | 11.80 | 11.35 | 10.85 | 10.35 | 9.88 | 9.42 | 8.99 | | 13.51 | 13.55 | 13.66 | 13.58 | 13.46 | 13.40 | 13.17 | 13.00 | 12.67 | 12.40 | 12.01 | 11.60 | 11.18 | 10.76 | 10.34 | 9.92 | 9.50 | 9.10 | 8.72 | ### Irma Salinas From: Brian Lusher Sent: Thursday, March 15, 2007 8:48 AM To: Irma Salinas Subject: Final Air Toxics Inventory \ir Toxics Emissions Eastshore... Annual Average Firing Rate 72.08 MMBtu/hr Short Term Max Firing Rate 72.8 MMBtu/hr Ammonia Slip Now 10 ppm Diesel Engine 50 hours Please Finalize the Health Risk Screening Analysis with this data. Thanks, Brian K Lusher Air Quality Engineer II Engineering Division Bay Area Air Quality Management District Phone (415) 749-4623 Fax (415) 749-5030 # BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA APPLICATION FOR CERTIFICATION FOR THE EASTSHORE ENERGY CENTER IN CITY OF HAYWARD BY TIERRA ENERGY Docket No. 06-AFC-6 PROOF OF SERVICE (Revised 10/12/2007) INSTRUCTIONS: All parties shall either (1) send an original signed document plus 12 copies or (2) mail one original signed copy AND e-mail the document to the address for the Docket as shown below, AND (3) all parties shall also send a printed or electronic copy of the document, which includes a proof of service declaration to each of the individuals on the proof of service list shown below: CALIFORNIA ENERGY COMMISSION Attn: Docket No. 06-AFC-6 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.state.ca.us ### **APPLICANT** Greg Trewitt, Vice President Tierra Energy 710 S. Pearl Street, Suite A Denver, CO 80209 greg.trewitt@tierraenergy.com Harry Rubin, Executive Vice President RAMCO Generating Two 1769 Orvietto Drive Roseville, CA 95661 hmrenergy@msn.com ### APPLICANT'S CONSULTANTS David A. Stein, PE Vice President CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 dstein@ch2m.com Jennifer Scholl Senior Program Manager CH2M HILL 610 Anacapa Street, Suite B5 Santa Barbara, CA 93101 jscholl@ch2m.com ### **COUNSEL FOR APPLICANT** Jane Luckhardt, Esq. Downey Brand Law Firm 555 Capitol Mall, 10th Floor Sacramento, CA 95814 iluckhardt@downeybrand.com ### INTERESTED AGENCIES Larry Tobias CA Independent System Operator 151 Blue Ravine Road Folsom, CA 95630 ltobias@caiso.com Electricity Oversight Board 770 L Street, Suite 1250 Sacramento, CA 95814 esaltmarsh@eob.ca.gov James Sorensen, Director Alameda County Development Agency 224 West Winton Ave., Rm 110 Hayward CA 94544 james.sorensen@acgov.org chris.bazar@acgov.org eileen.dalton@acgov.org Richard Winnie, Esq. Alameda County Counsel 1221 Oak Street, Rm 463 Oakland, CA 94612 richard.winnie@acgov.org susan.muranishi@acgov.org Greg Jones, City Manager City of Hayward 777 B Street Hayward, California 94541 greg.jones@hayward-ca.gov michael.sweeney@hayward-ca.gov maureen.conneely@hayward-ca.gov ### INTERVENORS Paul N. Haavik 25087 Eden Avenue Hayward, CA 94545 lindampaulh@msn.com ### **ENERGY COMMISSION** Jeffrey D. Byron,
Presiding Member jbyron@energy.state.ca.us John L. Geesman, Associate Member igeesman@energy.state.ca.us Susan Gefter, Hearing Officer sqefter@energy.state.ca.us Bill Pfanner, Project Manager bpfanner@energy.state.ca.us Caryn Holmes, Staff Counsel cholmes@energy.state.ca.us Public Adviser pao@energy.state.ca.us ### **DECLARATION OF SERVICE** I, <u>Maria Sergoyan</u>, declare that on <u>October 23, 2007</u>, I deposited copies of the attached <u>Final Determination of Compliance (FDOC) for the proposed Eastshore Energy Center (EEC)</u> in the <u>United States mail at Sacramento, California</u> with first-class postage thereon fully prepaid and addressed to those identified on the Proof of Service list above. OR Transmission via electronic mail was consistent with the requirements of the California Code of Regulations, title 20, sections 1209, 1209.5, and 1210. All electronic copies were sent to all those identified on the Proof of Service list above. I declare under penalty of perjury that the foregoing is true and correct. Maria Sergoyan